

Introduction to Ansible

Network Startup Resource Center

Are your servers Pets or Cattle?

Source:
http://www.slideshare.net/gmccance/cern-data-centre-evolution

http://www.slideshare.net/gmccance/cern-data-centre-evolution

What is Ansible?

● A configuration management tool

● Applies changes to your system to bring it to a
desired state

● Similar applications include puppet, chef, salt,
juju, cfengine

Why choose Ansible?

● Target system requires only sshd and python

– No daemons or agents to install

● Security

– Relies on ssh

● Easy to get started, compared to the others!

Ansible running with cowsay

< TASK: [install /etc/hosts] >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

ok: [pc1.example.com]

Modules

● Ansible “modules” are small pieces of code
which perform one function

– e.g. copy a file, start or stop a daemon

● Most are “idempotent”: running repeatedly has
the same effect as running once

– only makes a change when the system is not
already in the desired state

● Many modules supplied as standard

– http://docs.ansible.com/modules.html

Invoking modules from shell

$ ansible s1.ws.nsrc.org -m service \
 -a "name=apache2 state=running"

Host or group Module name

Module arguments

Configuring Ansible behaviour

● Tasks are modules called with specific
arguments

● Handlers are triggered when something
changes

– e.g. restart daemon when a config file is changed

● Roles are re-usable bundles of tasks, handlers
and templates

● All defined using YAML

Diversion: YAML

● A way of storing structured data as text

● Conceptually similar to JSON

– String and numeric values

– Lists: ordered sequences

– Hashes: unordered groups of key-value pairs

● String values don't normally need quotes

● Lists and hashes can be nested

● Indentation used to define nesting

YAML list (ordered sequence)

● Single line form

● Multi-line form

[birth, taxes, death]

- birth
- taxes
- death

Space after dash required

YAML hash (key-value pairs)

● Single line form

● Multi-line form

{item: shirt, colour: red, size: 42}

item: shirt
colour: red
size: 42
description: |
 this is a very long multi-line
 text field which is all one value

Space after colon required

Nesting: list of hashes

● Compact

● Multi-line

- {item: shirt, colour: red, size: 42}
- {item: shirt, colour: blue, size: 44}

- item: shirt
 colour: red
 size: 42
- item: shirt
 colour: blue
 size: 44

Note alignment

More complex YAML example

- do: laundry
 items:
 - trousers
 - shirts
- do: polish
 items:
 - shoes
 - buckle
- do: relax
 eat:
 - chocolate
 - chips

A list with 3 items

Each item is a hash (key-value pairs)

Simple value

List value (note indentation)

Ansible playbook

- hosts:
 - pc1.example.com
 - pc3.example.com
 tasks:
 - name: install Apache
 action: apt pkg=apache2 state=present
 - name: ensure Apache is running
 action: service name=apache2 state=running
- hosts: dns_servers
 roles:
 - dns_server
 - ntp

Top level: a list of "plays"

Each play has "hosts" plus "tasks" and/or "roles"

Roles

● A bundle of related tasks/handlers/templates

roles/<rolename>/tasks/main.yml
roles/<rolename>/handlers/main.yml
roles/<rolename>/defaults/main.yml
roles/<rolename>/files/...
roles/<rolename>/templates/...

Recommended way to make re-usable configs

Not all these files need to be present

Tags

● Each role or individual task can be labelled with
one or more "tags"

● When you run a playbook, you can tell it only to
run tasks with a particular tag: -t <tag>

● Lets you selectively run parts of playbooks

Inventory

● Lists all hosts which Ansible may manage

● Simple "INI" format, not YAML

● Can define groups of hosts

● Default is /etc/ansible/hosts

– Can override using -i <filename>

Inventory (hosts) example

[dns_servers]
pc1.example.com
pc2.example.com

[misc]
pc3.example.com
pc4.example.com

Note: the same host can be listed under
multiple groups.
Group "all" is created automatically.

Name of group
Hosts in this group

Inventory variables

● You can set variables on hosts or groups of
hosts

● Variables can make tasks behave differently
when applied to different hosts

● Variables can be inserted into templates

● Some variables control how Ansible connects

Setting host vars

● Directly in the inventory (hosts) file

● In file host_vars/pc2.example.com

[core_servers]
pc1.example.com ansible_connection=local
pc2.example.com

ansible_ssh_host: 10.10.0.241
ansible_ssh_user: root
flurble:
 - foo
 - bar
This is in YAML and is preferred

Setting group vars

● group_vars/dns_servers

● group_vars/all

More YAML
flurble:
 - baz
 - qux

More YAML, applies to every host
Note: host vars take priority over group vars

"Facts"

● Facts are variables containing information
collected automatically about the target host

● Things like what OS is installed, what interfaces
it has, what disk drives it has

● Can be used to adapt roles automatically to the
target system

● Gathered every time Ansible connects to a host
(unless playbook has "gather_facts: no")

Showing facts

$ ansible s1.ws.nsrc.org -m setup | less
s1.ws.nsrc.org | success >> {
 "ansible_facts": {
 "ansible_distribution": "Ubuntu",
 "ansible_distribution_version": "12.04",
 "ansible_domain": "ws.nsrc.org",
 "ansible_eth0": {
 "ipv4": {
 "address": "10.10.0.241",
 "netmask": "255.255.255.0",
 "network": "10.10.0.0"
 }, … etc

Invoke the "setup" module

jinja2 template examples

● Insert a variable into text

● Looping over lists

INTERFACES="{{ dhcp_interfaces }}"

search ws.nsrc.org
{% for host in dns_servers %}
nameserver {{ host }}
{% endfor %}

Many other cool features

● Conditionals

● Loops

- action: apt pkg=apache2 state=present
 when: ansible_os_family=='Debian'

- action: apt pkg={{item}} state=present
 with_items:
 - openssh-server
 - acpid
 - rsync
 - telnet

Getting up-to-date Ansible

● Your package manager's version may be old

● For Ubuntu LTS: use the PPA

apt-get install python-software-properties
add-apt-repository ppa:rquillo/ansible
apt-get update
apt-get install ansible

More info and documentation

● http://docs.ansible.com/

● http://docs.ansible.com/faq.html

● http://jinja.pocoo.org/docs/templates/

http://docs.ansible.com/
http://docs.ansible.com/faq.html
http://jinja.pocoo.org/docs/templates/

