

Getting Started with Linux
Permissions

Network Startup Resource Center
www.nsrc.org

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license
(http://creativecommons.org/licenses/by-nc/4.0/)

Understand the following:

 The Linux / Unix security model

 How a program is allowed to run

 Where user and group information is stored

 Details of file permissions

Goals

Linux understands Users and Groups

A user can belong to several groups

A file can belong to only one user and one group at
a time

A particular user, the superuser “root” has extra
privileges (uid = “0” in /etc/passwd)

Only root can change the ownership of a file

Users and Groups

User information in /etc/passwd

Password info is in /etc/shadow

Group information is in /etc/group

/etc/passwd and /etc/group divide data
fields using “:”

/etc/passwd:
joeuser:x:1000:1000:Joe User,,,:/home/joeuser:/bin/bash

/etc/group:

joeuser:x:1000:

Users and Groups

 A program may be run by a user, when the system
starts or by another process.

 Before the program can execute the kernel inspects
several things:

• Is the file containing the program accessible to the user
or group of the process that wants to run it?

• Does the file containing the program permit execution
by that user or group (or anybody)?

• In most cases, while executing, a program inherits the
privileges of the user/process who started it.

A Program Runs...

When we type:

ls -l /usr/bin/top

We'll see:
-rwxr-xr-x 1 root root 68524 2011-12-19 07:18 /usr/bin/top

What does all this mean?

A Program In Detail

-r-xr-xr-x 1 root root 68524 2011-12-19 07:18 /usr/bin/top

---------- --- ------- ------- -------- ------------ -------------
 | | | | | | |
 | | | | | | File Name
 | | | | | |
 | | | | | +--- Modification Time/Date
 | | | | |
 | | | | +------------- Size (in bytes
 | | | |
 | | | +----------------------- Group
 | | |
 | | +-------------------------------- Owner
 | |
 | +-------------------------------------- “link count”
 |
 +-- File Permissions

Group
 The name of the group that has permissions in addition to the file's owner.
Owner
 The name of the user who owns the file.
File Permissions

The first character is the type of file. A "-" indicates a regular (ordinary) file. A "d”
indicate a directory. Second set of 3 characters represent the read, write, and execution rights of
the file's owner. Next 3 represent the rights of the file's group, and the final 3 represent the
rights granted to everybody else.

(Example modified from http://www.linuxcommand.org/lts0030.php)

A Program In Detail

Files are owned by a user and a group (ownership)

Files have permissions for the user, the group, and
other

“other” permission is often referred to as “world”

The permissions are Read, Write and Execute
(r, w, x)

The user who owns a file is always allowed to change
its permissions

Access Rights

When looking at the output from “ls -l” in the first
column you might see:

d = directory
- = regular file
l = symbolic link
s = Unix domain socket
p = named pipe
c = character device file
b = block device file

Some Special Cases

In Owner, Group and other columns you might see:

s = setuid [when in Owner column]

s = setgid [when in Group column]

t = sticky bit [when at end]

Some References
http://www.cs.uregina.ca/Links/class-info/330/Linux/linux.html

http://www.onlamp.com/pub/a/bsd/2000/09/06/FreeBSD_Basics.html

Some Special Cases

There are two ways to set permissions when using
the chmod command:

Symbolic mode:

testfile has permissions of -r--r--r--

 u g o*

$ chmod g+x testfile ==> -r--r-xr--

$ chmod u+wx testfile ==> -rwxr-xr--

$ chmod ug-x testfile ==> -rw--r--r—

u=user, g=group, o=other (world)

File Permissions

Absolute mode:

We use octal (base eight) values represented like this:
Letter Permission Value

r read 4

w write 2

x execute 1

- none 0

For each column, User, Group or Other you can set
values from 0 to 7. Here is what each means:

0= --- 1= --x 2= -w- 3= -wx

4= r-- 5= r-x 6= rw- 7= rwx

File Permissions

Two critical points:

1.The permissions of a directory affect whether
someone can see its contents or add or remove
files in it.

2.The permissions on a file determine what a user
can do to the data in the file.

Example:

If you don't have write permission for a directory, then
you can't delete a file in the directory. If you have write
access to the file you can update the data in the file.

Inherited permissions

Numeric mode cont:

Example index.html file with typical permission values:

$ chmod 755 index.html

$ ls -l index.html
-rwxr-xr-x 1 root wheel 0 May 24 06:20 index.html

$ chmod 644 index.html

$ ls -l index.html
-rw-r--r-- 1 root wheel 0 May 24 06:20 index.html

Inherited Permissions

To reinforce these concepts let's do some exercises.

In addition, a very nice reference on using the chmod
command is:

An Introduction to Unix Permissions -- Part Two

By Dru Lavigne (note, this is for FreeBSD)
http://www.onlamp.com/pub/a/bsd/2000/09/13/FreeBSD_Basics.html

Conclusion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

