Choosing Routers for the Campus

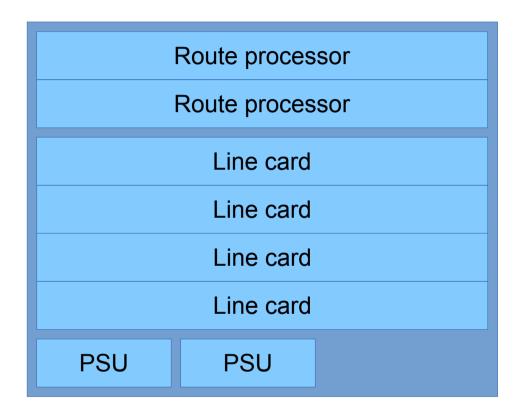
Network Startup Resource Center

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

Choosing a Campus Core Router

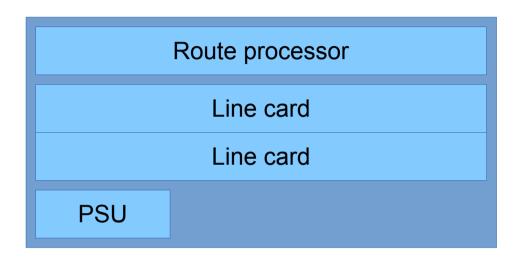
Core router: essential features

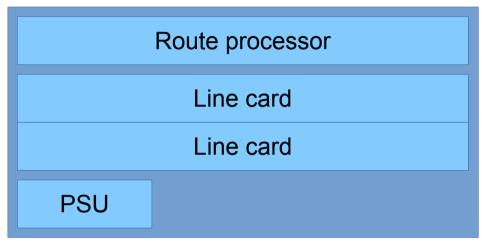
- Lots of fiber ports
 - SFP (1G) or SFP+ (10G)
- Robust, line-rate routing (layer 3 forwarding)
 - IPv4 and IPv6, static routes
- Sufficient ARP (IPv4) and NDP (IPv6) entries
- DHCP relay (DHCP helper)
- Management: SNMP, netflow/jflow/sflow etc


Core router: optional features

- OSPF (v2 and v3) or IS-IS
- HSRP/VRRP
- Hardware redundancy (e.g. dual PSU)
 - but would you be better buying a whole second device?

One super-redundant device




- Chassis failures are not unknown :-(
- What would you do if that happened?

Two less-redundant devices

- Running "live-live" so everything is tested
- In emergency, can move key users to other side
- Key buildings can be dual-homed
 - This is where OSPF and HSRP/VRRP come in

Don't spend too much!

- Many "edge" L3 switches make fine campus core routers
- You won't be carrying a full routing table
 - so a limit of say 16K routes isn't a problem
 - check how many IP interfaces/VLANs it supports
- Whatever you buy today will be obsolete in 3-5 years anyway
- If it's cheap you can afford two

Cisco C3750X-{12,24}S-E

- 12 or 24 SFP ports
 - Plus 2-4 optional uplinks ("service module")
 - Only does Netflow on the service module ports
- Stackable (up to 9 units)
- Needs Advanced IP Services licence for IPv6

Cisco C4500-X

- 16 or 32 10GE (SFP+) ports
 - Plus optional 8-port 10GE expansion module
- IPv4/IPv6 with IP Base licence
 - Enterprise licence gives you BGP
- Can stack two, using 10GE ports ("VSS")

Juniper EX4200-24F

- 24 SFP ports
- Optional 2 x 10G modules
- Stackable (up to 10)

"Advanced Feature" licence not required - only for IS-IS, BGP and MPLS

Juniper EX4500

- 40 SFP+ ports (1G/10G)
- Optional uplink modules

Beware limit of only 1,000 IPv6 NDP entries in hardware; use with L3 distribution switches?

Not big enough?!

- Above this you are looking at chassis switches
- Examples:
 - Cisco 4500E
 - Juniper EX8208, EX8216

Maybe you already have one!

- Check the features of your existing devices
 - And check on forums for experiences of people using the same device for routing
- May need to enable it: "ip routing" or similar
- May need to update to latest stable firmware
- Test with a spare device if you have one

Choosing a Campus Border Router

Border router: essential features

- Robust, line-rate routing (layer 3 forwarding)
 - IPv4 and IPv6, static routes
- Strong CPU, Large Memory
- Sufficient ARP (IPv4) and NDP (IPv6) entries
- Management: SNMP, netflow/jflow/sflow etc
- OSPF (v2 and v3) or IS-IS
- NAT (if using internal private IPv4 address space)
- Hardware redundancy (e.g. dual PSU)
 - but would you be better buying a whole second device?

Border router: optional features

- If Multihoming:
 - Full support for BGP
 - Ability to carry full BGP table (if needed)
 - Support of all BGP Attributes, implementing BGP policies

Sizing a Border Router

- Consider connection to upstream provider
 - Allow for headroom far greater than link capacity
 - Bandwidth upgrades needed
 - Traffic growths larger than expectation
 - Dealing with Denial of Service Attacks from outside
- Physical chassis size is irrelevant
 - Smaller the better, reduced power and space requirements
- Border router needs:
 - Internal interface (to network core)
 - External interface(s) (to upstream provider(s))
 - 1 Rack Unit is usually enough

Typical Examples

- Cisco 7301 or Cisco 7201
 - Now end of sales, but excellent 1RU router with 3 and 4GE interfaces respectively
 - No real equivalent, but Cisco 3945 (4 RU) is close in performance
- Cisco ASR 1000 Series
 - "replaces" Cisco 7201 but more expensive and higher performance (also 4GE SFP interfaces built in)
 - Suitable for uplinks from 500Mbps to <10Gbps

Typical Examples

- Cisco ASR 9001
 - Not really a border router, but being used as such by several
 - 4 builtin 10GE SFP+ interfaces, with support for 40GE modules
 - Suitable for over 3Gbps uplinks
- Juniper MX5 to MX80
 - Model upgradable by licence
 - Suitable for uplinks from 500Mbps to <10Gbps
- Juniper MX240 upwards
 - For bandwidths over 10Gbps

Summary

Core Router

- Focus on scalability, sufficient CPU to ensure current and immediate future needs
- Router or "L3 Switch" is often appropriate, as routing needs in the Core are not onerous

Border Router

- Physical size unimportant → small!
- Needs v few interfaces
- Needs big CPU to handle border functions
- Consider future BGP needs

