Campus Networking Workshop

Introduction to Routing and Forwarding

These materials are licensed under the Creative Commons *Attribution-Noncommercial 3.0 Unported* license (http://creativecommons.org/licenses/by-nc/3.0/)

Forwarding and Routing

- Forwarding is receiving packets on an interface and re-sending them out on another interface
- Routing is deciding on the best path to reach any given destination
- These are two different concepts!
 - On a high-end router, Forwarding is done in hardware
 - Routing is a software function

Outline forwarding operation

- Receive a datagram
- Is it for us (Destination IP = ours)? Accept
- Decrement the TTL field
 - if TTL reaches zero, discard the datagram
 - recalculate header checksum
- Look up the destination IP address in forwarding table to find the next hop
 - if not found, discard the datagram
- Re-send to next hop

Forwarding

- The best way to reach a given prefix is stored in the Forwarding Table or FIB
- Each packet's destination address is looked up to decide where to send it next (the next hop)

Destination Prefix	Next Hop
10.10.0.0/16	1.2.3.3
10.10.1.0/24	1.2.3.4
10.10.2.0/24	1.2.3.5

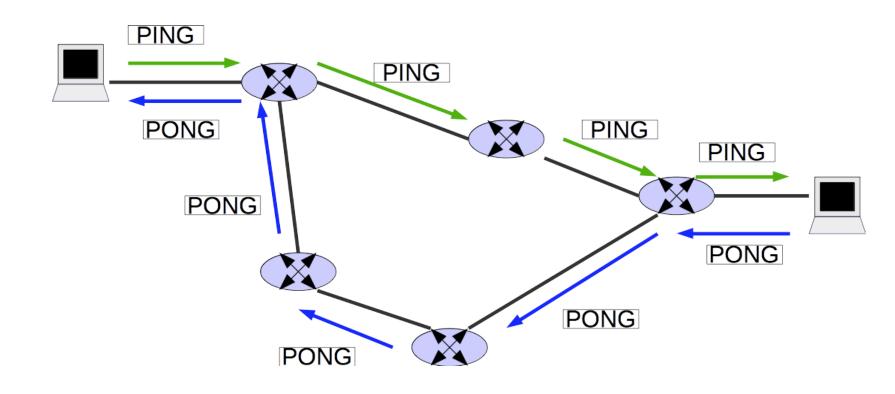
Longest Prefix Rule

- If the destination matches multiple prefixes, the longest prefix wins
- Example: packet destination 10.10.1.1

Destination Prefix	Next Hop	
10.10.0.0/16	1.2.3.3	MATCH!
10.10.1.0/24	1.2.3.4	MATCH! Longest Prefix
10.10.2.0/24	1.2.3.5	no match

Default route

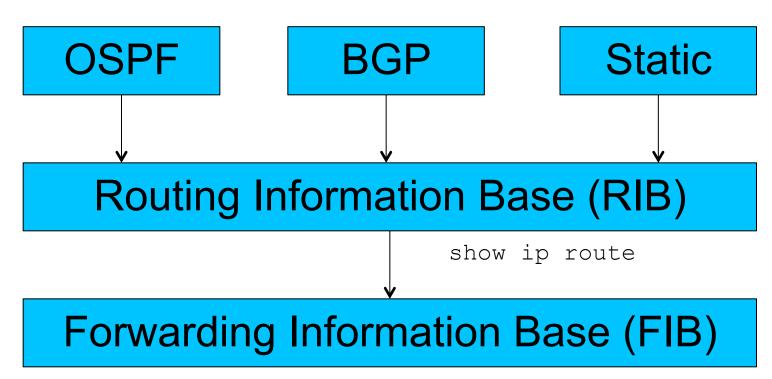
- Destination 0.0.0.0/0 or ::/0
- Matches every IP address
- But only when there is no better match (longer prefix) for that destination


Forwarding is hop-by-hop

- Every router has a different forwarding table for its place in the network
- Path chosen from A towards B is not necessarily the same path as B chooses towards A
 - And if "ping" doesn't respond, remember it could be either the outbound path or the return path which is broken

Asymmetric paths

Routing


- Deciding the best path to any given destination
- Configured manually: static routing
- Learned automatically: dynamic routing

Routing and Forwarding

Routing information populates the FIB

Routing protocols

- A collection of routers managed together is called an autonomous system (AS)
- Within an AS you use an Interior Gateway Protocol
 - e.g. OSPF, IS-IS
- Between one AS and another AS you use an Exterior Gateway Protocol
 - -e.g. BGP

Routing scalability

- The whole Internet is described by approx. 520,000 IPv4 routes and 19,000 IPv6 routes
- In a single-homed network you don't need all these routes
 - Just local routes within your network, and a default route pointing at your ISP
- If you are multi-homed, you need a router which speaks BGP

