Network Management & Monitoring
Introduction

Network Monitoring Tools

- Availability
- Reliability
- Performance

Nagios actively monitors the availability of devices and services
Introduction

- Possibly the most used open source network monitoring software.
- Has a web interface.
 - Uses CGIs written in C for faster response and scalability.
- Can support up to thousands of devices and services.
Installation

In Debian/Ubuntu

 # apt-get install nagios3

Key directories

/etc/nagios3
/etc/nagios3/conf.d
/etc/nagios-plugins/conf
/usr/lib/nagios/plugins
/usr/share/nagios3/htdocs/images/logos

Nagios web interface is here:

http://pcN.ws.nsrec.org/nagios3/
Plugins

Plugins are used to verify services and devices:

- Nagios architecture is simple enough that writing new plugins is fairly easy in the language of your choice.
- There are many, many plugins available (thousands).
 ✓ http://exchange.nagios.org/
 ✓ http://nagiosplugins.org/
Features

- Configuration done in text files, based on templates.
- Nagios reads its configuration from a directory. You determine how to divide your configuration files.
- Uses parallel checking and forking for scalability.
Features cont.

- Utilizes topology to determine dependencies.
 - Differentiates between what is down vs. what is unreachable. Avoids running unnecessary checks and sending redundant alarms.

- Allows you to define how to send notifications based on combinations of:
 - Contacts and lists of contacts
 - Devices and groups of devices
 - Services and groups of services
 - Defined hours by persons or groups
 - The state of a service.
Notification Options (Host)

Host state:
When configuring a host you have the following notification options:

- d: DOWN
- u: UNREACHABLE
- r: RECOVERY
- f: FLAPPING
- n: NONE
NOTE: The flow will only continue when each of the listed filters are satisfied.
How checks work

- A node/host/device consists of one or more service checks (PING, HTTP, MYSQL, SSH, etc.)
- Periodically Nagios checks each service for each node and determines if state has changed. State changes are:
 - CRITICAL
 - WARNING
 - UNKNOWN
- For each state change you can assign:
 - Notification options (as mentioned before)
 - Event handlers
How checks work continued

Parameters

- Normal checking interval
- Re-check interval
- Maximum number of checks.
- Period for each check

- Node checks only happen when services respond.
 - A node can be:
 - DOWN
 - UNREACHABLE
By default Nagios does a node check 3 times before it will change the node’s state to down.

No response states goes to warning then critical
The concept of “parents”

Nodes can have parents:

• The parent of a **PC** connected to a **switch** would be the **switch**.

• Allows us to specify the dependencies between devices.

• Avoids sending alarms when parent does not respond.

• A node can have multiple parents (dual homed).
Network viewpoint

- Where you locate your Nagios server will determine your point of view of the network.
- The Nagios server becomes the “root” of your dependency tree
Network viewpoint
Demo Nagios
Configuration Files

- Lots!
- Can seem complex at first
- **Object oriented**
 - Objects (devices or services) inherit attributes.
 - Apply functionality to *groups of devices*.
 - Do not apply functionality to individual objects. Does not scale!
 - Once you understand Nagios configs the rest is easy…
Configuration files (Official)
Configuration Files

Located in /etc/nagios3/

Important files include:

- **cgi.cfg** Controls the web interface and security options.
- **commands.cfg** The commands that Nagios uses for notifications.
- **nagios.cfg** Main configuration file.
- **conf.d/*** All other configuration goes here!
Configuration files continued

Under conf.d/*

- contacts_nagios2.cfg users and groups
- extinfo_nagios2.cfg make your UI pretty
- generic-host_nagios2.cfg default host template
- generic-service_nagios2.cfg default service template
- host-gateway_nagios3.cfg definition
- hostgroups_nagios2.cfg groups of nodes
- localhost_nagios2.cfg definition of nagios host
- services_nagios2.cfg what services to check
- timeperiods_nagios2.cfg when to check who to notify
Configuration files continued

Under conf.d some other possible config files:

- servicegroups.cfg Groups of nodes and services
- pcs.cfg Sample definition of PCs (hosts)
- switches.cfg Definitions of switches (hosts)
- routers.cfg Definitions of routers (hosts)
Pre-installed plugins in Ubuntu

/usr/lib/nagios/plugins

check_apt check_file_age check_jabber check_nntp check_procs check_swap
check_bgpstate check_flexlm check_ldap check_nttps check_radius check_tcp
check_breeze check_ftp check_lhaps check_nt check_real check_time
check_by_ssh check_host check_linux_raid check_load check_rpc check_udp
check_cluster check_http check_log check_mailq check_rts MULTI check_users
check_dhcp check_icalp check_ntp_peer check_ntp_time check_sensors check_wave
check_dig check_ide_smart check_ntp check_rts_pee check_simap check_who
check_disk check_ifoperstatus check_ntp_peer check_rts_time check_smalp check_urlize
check_disk_smb check_ifstatus check_mysql check_oracle check_overcr check_utils.pm
check_dns check_imap check_mrtg check_overcr check_psql check_utils.sh
check_dummy check_ircd check_mysql_query check_ping check_pop check_ssnmp
check_nagios check_swap

/etc/nagios-plugins/config

apt.cfg disk-smb.cfg ftp.cfg ldap.cfg mysql.cfg ntp.cfg radius.cfg ssh.cfg
breeze.cfg dns.cfg hppjd.cfg load.cfg netware.cfg psql.cfg real.cfg tcp_udp.cfg
dhcp.cfg dummy.cfg http.cfg mail.cfg news.cfg ping.cfg rpc-nfs.cfg telnet.cfg
disk.cfg flexlm.cfg ifstatus.cfg mrtg.cfg nt.cfg proc.cfg snmp.cfg users.cfg
Nodes and services configuration

Based on templates
- This saves lots of time avoiding repetition
- Similar to Object Oriented programming

Create default templates with default parameters for a:
- *generic node* (generic-host_nagios2.cfg)
- *generic service* (generic-service_nagios2.cfg)
- *generic contact* (contacts_nagios2.cfg)
Generic node template

generic-host_nagios2.cfg

```plaintext
define host{
    name generic-host ; The name of this host template
    notifications_enabled 1 ; Host notifications are enabled
    event_handler_enabled 1 ; Host event handler is enabled
    flap_detection_enabled 1 ; Flap detection is enabled
    failure_prediction_enabled 1 ; Failure prediction is enabled
    process_perf_data 1 ; Process performance data
    retain_status_information 1 ; Retain status information across program restarts
    retain_nonstatus_information 1 ; Retain non-status information across program restarts
    check_command check-host-alive
    max_check_attempts 10
    notification_interval 0
    notification_period 24x7
    notification_options d,u,r
    contact_groups admins
    register 0 ; DONT REGISTER THIS DEFINITION - ITS NOT A REAL HOST, JUST A TEMPLATE!
}
```
Individual node configuration

```plaintext
define host{
    use generic-host
    host_name gw-rtr
    alias Main workshop router
    address 192.0.2.1
    contact_groups router_group
}
```
Generic service configuration

generic-service_nagios2.cfg

define service{
 name generic-service
 active_checks_enabled 1
 passive_checks_enabled 1
 parallelize_check 1
 obsess_over_service 0
 check_freshness 1
 notifications_enabled 1
 event_handler_enabled 1
 flap_detection_enabled 1
 process_perf_data 1
 retain_status_information 1
 retain_nonstatus_information 1
 is_volatile 0
 check_period 24x7
 max_check_attempts 5
 normal_check_interval 5
 retry_check_interval 1
 notification_interval 60
 notification_period 24x7
 notification_options c,r
 register 0
}
Individual service configuration

```plaintext
define service{
    hostgroup_name                servers
    service_description           PING
    check_command                 check-host-alive
    use                           generic-service
    max_check_attempts            5
    normal_check_interval         5
    notification_options          c,r,f
    notification_interval         0 ; set > 0 if you want to be renotified
}
```

c: Critical
r: Recovering
f: Flapping
Configuration flow

Items inherit from templates
We start with a host
- Place multiple hosts in a group
- Define parents
- Add a service check to the group
- Add extended info, if any
Another view of configuration

RTR
define host {
 use
 generic-host
 rtr
 host_name
 rtr
 alias
 Gateway Router
 address
 10.10.0.254
}

SW
define host {
 use
 generic-host
 sw
 host_name
 sw
 alias
 Backbone Switch
 address
 10.10.0.253
 parents
 rtr
}

RTR3
define host {
 use
 generic-host
 rtr3
 host_name
 router 3
 alias
 address
 10.10.3.254
 parents
 sw
}

PC11...
OoB notifications

A critical item to remember: an SMS or message system that is independent from your network.

- You can utilize a cell phone connected to the Nagios server
- You can use packages like:
 gnokii: http://www.gnokii.org/
 qpage: http://www.qpage.org/
 sendpage: http://www.sendpage.org/
References

• Nagios web site
 http://www.nagios.org/

• Nagios plugins site
 http://www.nagiosplugins.org/

• Unofficial Nagios plugin site
 http://nagios.exchange.org/

• A Debian tutorial on Nagios
 http://www.debianhelp.co.uk/nagios.htm

• Commercial Nagios support
 http://www.nagios.com/
Questions?
A few additional slides you may find useful or informative…
Features, features, features…

- Allows you to acknowledge an event.
 - A user can add comments via the GUI
- You can define maintenance periods
 - By device or a group of devices
- Maintains availability statistics.
- Can detect flapping and suppress additional notifications.
- Allows for multiple notification methods:
 - e-mail, pager, SMS, winpopup, audio, etc...
- Allows you to define notification levels for escalation
Main configuration details

Global settings

File: /etc/nagios3/nagios.cfg

• Says where other configuration files are.
• General Nagios behavior:
 - For large installations you should tune the installation via this file.
 - See: Tuning Nagios for Maximum Performance
 http://nagios.sourceforge.net/docs/2_0/tuning.html
CGI configuration

/etc/nagios3/cgi.cfg

- You can change the CGI directory if you wish
- Authentication and authorization for Nagios use:
 - Activate authentication via Apache's .htpasswd mechanism, or using RADIUS or LDAP.
 - Users can be assigned rights via the following variables:
 - authorized_for_system_information
 - authorized_for_configuration_information
 - authorized_for_system_commands
 - authorized_for_all_services
 - authorized_for_all_hosts
 - authorized_for_all_service_commands
 - authorized_for_all_host_commands
Time Periods

This defines the base periods that control checks, notifications, etc.

- Defaults: 24 x 7
- Could adjust as needed, such as work-week only.
- Could adjust a new time period for “outside of regular hours”, etc.

```plaintext
# '24x7'
define timeperiod{
    timeperiod_name 24x7
    alias 24 Hours A Day, 7 Days A Week
    sunday 00:00-24:00
    monday 00:00-24:00
    tuesday 00:00-24:00
    wednesday 00:00-24:00
    thursday 00:00-24:00
    friday 00:00-24:00
    saturday 00:00-24:00
}
```
'check-host-alive' command definition
define command{
 command_name check-host-alive
 command_line $USER1$/check_ping -H $HOSTADDRESS$ -w 2000.0,60% -c 5000.0,100% -p 1 -t 5
}

- Located in /etc/nagios-plugins/config, then adjust in /etc/nagios3/conf.d/services_nagios2.cfg

- While these are “service” or “host” checks Nagios refers to them as “commands”
Notification commands

Allows you to utilize any command you wish. We could use this to generate tickets in RT.

```plaintext
# 'notify-by-email' command definition
define command{
    command_name notify-by-email
    command_line /usr/bin/printf "%b" "Service: $SERVICEDESC$\nHost: $HOSTNAME$\nIn: $HOSTALIAS$\nAddress: $HOSTADDRESS$\nState: $SERVICESTATE$\nInfo: $SERVICEOUTPUT$\nDate: $SHORTDATETIME$" | /bin/mail -s
'$NOTIFICATIONTYPE$: $HOSTNAME$/$SERVICEDESC$ is $SERVICESTATE$'
$CONTACTEMAIL$
}
```

From: nagios@nms.localdomain
To: router_group@localdomain
Subject: Host DOWN alert for TLD1-RTR!
Date: Thu, 29 Jun 2006 15:13:30 -0700

Host: gw-rtr
In: Core_Routers
State: DOWN
Address: 192.0.2.100
Date/Time: 06-29-2006 15:13:30
Info: CRITICAL - Plugin timed out after 6 seconds
check that ssh services are running
define service {
 hostgroup_name ssh-servers
 service_description SSH
 check_command check_ssh
 use generic-service
 notification_interval 0 ; set > 0 if you want to be renotified
}

The “service_description” is important if you plan to create Service Groups. Here is a sample Service Group definition:

define servicegroup{
 servicegroup_name Webmail
 alias web-mta-storage-auth
 members srvr1,HTTP,srvr1,SMTP,srvr1,POP,srvr1,IMAP,
 srvr1,RAID,srvr1,LDAP, srvr2,HTTP,srvr2,SMTP,
 srvr2,POP,srvr2,IMAP,srvr2,RAID,srvr2,LDAP
}
Screen Shots

A few sample screen shots from a Nagios install.
General View
Service Detail

Current Network Status
Last Updated: Thu Sep 3 14:46:07 CDT 2009
Updated every 90 seconds
Nagios® 3.0.2 - www.nagios.org
Logged in as guest
View History For all hosts
View Notifications For All Hosts
View Host Status Detail For All Hosts

Host Status Totals

<table>
<thead>
<tr>
<th>Status</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>41</td>
</tr>
<tr>
<td>Down</td>
<td>0</td>
</tr>
<tr>
<td>Unreachable</td>
<td>0</td>
</tr>
<tr>
<td>Pending</td>
<td>0</td>
</tr>
</tbody>
</table>

Service Status Totals

<table>
<thead>
<tr>
<th>Status</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Problems</td>
<td>0</td>
</tr>
<tr>
<td>All Types</td>
<td>41</td>
</tr>
</tbody>
</table>

Service Status Details For All Hosts

<table>
<thead>
<tr>
<th>Host</th>
<th>Service</th>
<th>Status</th>
<th>Last Check</th>
<th>Duration</th>
<th>Attempt</th>
<th>Status Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS-ROOT</td>
<td>SSH</td>
<td>OK</td>
<td>2009-09-03 14:43:51</td>
<td>43d 0h 55m 19s</td>
<td>1/4</td>
<td>SSH OK - OpenSSH_5.1p1 Debian-3-jun09u1 (protocol 2.0)</td>
</tr>
<tr>
<td>ISP-DNS</td>
<td>SSH</td>
<td>OK</td>
<td>2009-09-03 14:41:21</td>
<td>16d 3h 57m 24s</td>
<td>1/4</td>
<td>SSH OK - OpenSSH_5.1p1 Debian-3-jun09u1 (protocol 2.0)</td>
</tr>
<tr>
<td>ISP-RTR</td>
<td>SSH</td>
<td>OK</td>
<td>2009-09-03 14:43:57</td>
<td>43d 5h 35m 13s</td>
<td>1/4</td>
<td>SSH OK - Cisco-1.25 (protocol 2.0)</td>
</tr>
<tr>
<td>NOC-TLD1</td>
<td>SSH</td>
<td>OK</td>
<td>2009-09-03 14:41:27</td>
<td>1d 0h 1m 50s</td>
<td>1/4</td>
<td>SSH OK - OpenSSH_5.1p1 Debian-3-jun09u1 (protocol 2.0)</td>
</tr>
<tr>
<td>NOC-TLD2</td>
<td>SSH</td>
<td>OK</td>
<td>2009-09-03 14:43:04</td>
<td>1d 22h 44m 22s</td>
<td>1/4</td>
<td>SSH OK - OpenSSH_5.1p1 Debian-3-jun09u1 (protocol 2.0)</td>
</tr>
<tr>
<td>NOC-TLD3</td>
<td>SSH</td>
<td>OK</td>
<td>2009-09-03 14:41:34</td>
<td>1d 22h 40m 58s</td>
<td>1/4</td>
<td>SSH OK - OpenSSH_5.1p1 Debian-3-jun09u1 (protocol 2.0)</td>
</tr>
<tr>
<td>NOC-TLD4</td>
<td>SSH</td>
<td>OK</td>
<td>2009-09-03 14:44:10</td>
<td>1d 22h 44m 16s</td>
<td>1/4</td>
<td>SSH OK - OpenSSH_5.1p1 Debian-3-jun09u1 (protocol 2.0)</td>
</tr>
<tr>
<td>NOC-TLD5</td>
<td>SSH</td>
<td>OK</td>
<td>2009-09-03 14:41:40</td>
<td>1d 22h 41m 46s</td>
<td>1/4</td>
<td>SSH OK - OpenSSH_5.1p1 Debian-3-jun09u1 (protocol 2.0)</td>
</tr>
<tr>
<td>NOC-TLD6</td>
<td>SSH</td>
<td>OK</td>
<td>2009-09-03 14:44:17</td>
<td>1d 22h 44m 9s</td>
<td>1/4</td>
<td>SSH OK - OpenSSH_5.1p1 Debian-3-jun09u1 (protocol 2.0)</td>
</tr>
<tr>
<td>NOC-TLD7</td>
<td>SSH</td>
<td>OK</td>
<td>2009-09-03 14:41:47</td>
<td>1d 22h 41m 39s</td>
<td>1/4</td>
<td>SSH OK - OpenSSH_5.1p1 Debian-3-jun09u1 (protocol 2.0)</td>
</tr>
<tr>
<td>NOC-TLD8</td>
<td>SSH</td>
<td>OK</td>
<td>2009-09-03 14:44:23</td>
<td>1d 22h 44m 3s</td>
<td>1/4</td>
<td>SSH OK - OpenSSH_5.1p1 Debian-3-jun09u1 (protocol 2.0)</td>
</tr>
<tr>
<td>NS1-TLD1</td>
<td>SSH</td>
<td>OK</td>
<td>2009-09-03 14:41:53</td>
<td>1d 0h 1m 33s</td>
<td>1/4</td>
<td>SSH OK - OpenSSH_5.1p1 Debian-3-jun09u1 (protocol 2.0)</td>
</tr>
<tr>
<td>NS1-TLD2</td>
<td>SSH</td>
<td>OK</td>
<td>2009-09-03 14:44:30</td>
<td>1d 22h 43m 56s</td>
<td>1/4</td>
<td>SSH OK - OpenSSH_5.1p1 Debian-3-jun09u1 (protocol 2.0)</td>
</tr>
<tr>
<td>NS1-TLD3</td>
<td>SSH</td>
<td>OK</td>
<td>2009-09-03 14:42:00</td>
<td>1d 22h 41m 26s</td>
<td>1/4</td>
<td>SSH OK - OpenSSH_5.1p1 Debian-3-jun09u1 (protocol 2.0)</td>
</tr>
<tr>
<td>NS1-TLD4</td>
<td>SSH</td>
<td>OK</td>
<td>2009-09-03 14:44:36</td>
<td>1d 22h 43m 60s</td>
<td>1/4</td>
<td>SSH OK - OpenSSH_5.1p1 Debian-3-jun09u1 (protocol 2.0)</td>
</tr>
<tr>
<td>NS1-TLD5</td>
<td>SSH</td>
<td>OK</td>
<td>2009-09-03 14:42:06</td>
<td>1d 22h 41m 20s</td>
<td>1/4</td>
<td>SSH OK - OpenSSH_5.1p1 Debian-3-jun09u1 (protocol 2.0)</td>
</tr>
</tbody>
</table>
Host Status Details For All Host Groups

<table>
<thead>
<tr>
<th>Host</th>
<th>Status</th>
<th>Last Check</th>
<th>Duration</th>
<th>Status Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-01</td>
<td>U</td>
<td>2009-09-03 14:51:41</td>
<td>4h 3m</td>
<td>PING OK - Packet loss = 0%, RTA = 0.33 ms</td>
</tr>
<tr>
<td>M1-02</td>
<td>U</td>
<td>2009-09-03 14:51:41</td>
<td>4h 3m</td>
<td>PING OK - Packet loss = 0%, RTA = 0.29 ms</td>
</tr>
<tr>
<td>M1-03</td>
<td>U</td>
<td>2009-09-03 14:51:41</td>
<td>4h 3m</td>
<td>PING OK - Packet loss = 0%, RTA = 1.24 ms</td>
</tr>
<tr>
<td>M1-04</td>
<td>U</td>
<td>2009-09-03 14:52:01</td>
<td>1d 2h 53m</td>
<td>PING OK - Packet loss = 0%, RTA = 4.02 ms</td>
</tr>
<tr>
<td>M1-05</td>
<td>U</td>
<td>2009-09-03 14:52:01</td>
<td>1d 2h 53m</td>
<td>PING OK - Packet loss = 0%, RTA = 2.83 ms</td>
</tr>
<tr>
<td>M1-06</td>
<td>U</td>
<td>2009-09-03 14:52:01</td>
<td>1d 2h 53m</td>
<td>PING OK - Packet loss = 0%, RTA = 1.09 ms</td>
</tr>
<tr>
<td>M1-07</td>
<td>U</td>
<td>2009-09-03 14:52:01</td>
<td>1d 2h 53m</td>
<td>PING OK - Packet loss = 0%, RTA = 5.20 ms</td>
</tr>
<tr>
<td>M1-08</td>
<td>U</td>
<td>2009-09-03 14:52:01</td>
<td>1d 2h 53m</td>
<td>PING OK - Packet loss = 0%, RTA = 10.49 ms</td>
</tr>
<tr>
<td>M1-09</td>
<td>U</td>
<td>2009-09-03 14:52:01</td>
<td>1d 2h 53m</td>
<td>PING OK - Packet loss = 0%, RTA = 5.95 ms</td>
</tr>
<tr>
<td>M1-10</td>
<td>U</td>
<td>2009-09-03 14:52:01</td>
<td>1d 2h 53m</td>
<td>PING OK - Packet loss = 0%, RTA = 1.93 ms</td>
</tr>
<tr>
<td>M1-11</td>
<td>U</td>
<td>2009-09-03 14:52:01</td>
<td>1d 2h 53m</td>
<td>PING OK - Packet loss = 0%, RTA = 1.15 ms</td>
</tr>
<tr>
<td>M1-12</td>
<td>U</td>
<td>2009-09-03 14:52:01</td>
<td>1d 2h 53m</td>
<td>PING OK - Packet loss = 0%, RTA = 1.12 ms</td>
</tr>
<tr>
<td>M1-13</td>
<td>U</td>
<td>2009-09-03 14:52:01</td>
<td>1d 2h 53m</td>
<td>PING OK - Packet loss = 0%, RTA = 1.08 ms</td>
</tr>
<tr>
<td>M1-14</td>
<td>U</td>
<td>2009-09-03 14:52:01</td>
<td>1d 2h 53m</td>
<td>PING OK - Packet loss = 0%, RTA = 1.11 ms</td>
</tr>
<tr>
<td>M1-15</td>
<td>U</td>
<td>2009-09-03 14:52:01</td>
<td>1d 2h 53m</td>
<td>PING OK - Packet loss = 0%, RTA = 1.18 ms</td>
</tr>
<tr>
<td>M1-16</td>
<td>U</td>
<td>2009-09-03 14:52:01</td>
<td>1d 2h 53m</td>
<td>PING OK - Packet loss = 0%, RTA = 2.22 ms</td>
</tr>
</tbody>
</table>
Collapsed tree status map
Marked-up circular status map
More sample screenshots

Many more sample Nagios screenshots available here:

http://www.nagios.org/about/screenshots