Network Management & Monitoring Introduction to SNMP

Network Startup Resource Center www.nsrc.org

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

Overview

- What is SNMP?
- Polling and querying
- OIDs and MIBs
- Notifications
- SNMPv3

What is SNMP?

SNMP – Simple Network Management Protocol

- Structured protocol, structured information
- For querying network device state and receiving notifications
- Also can be used to change state
- Industry standard, hundreds of tools exist that use i
- Supported on any decent network equipment
- Transport : UDP ports 161 and 162 (notifications)

Uses for SNMP

Typical queries

- Bytes In/Out on an interface, errors
- CPU load
- Uptime
- Temperature or other vendor specific OIDs

For hosts (servers or workstations)

- Disk space
- Installed software
- Running processes

- ...

Windows and UNIX have SNMP agents

SNMP Versions

- v1 (1988) Original specification
 - Historic
- v2 (1996) Failed Standard
 - Security+new data types+new operators
 - 64-bit counters, get-bulk, v2 notifications
 - View-based access control model (VACM) introduced
 - Historic, no current implementations left
- v2c (1996) De facto standard
 - v2 data types and operators
 - v1 security (community string) (simple security model)
 - Historic
- v3 (1998) Robust security
 - User/view based security (USM/VACM)
 - Full Internet Standard

We will use SNMP v2c and v3 in this class

SNMP roles

Terminology—We will be using Manager and Agent

Manager (the monitoring station)

- Sometimes known as the SNMP client
- SNMPv3 calls it the Command Generator and Notification Receiver

Agent (running on the equipment/server)

- Sometimes known as the SNMP server
- SNMPv3 calls it the Command Responder and Notification Originator

How does SNMP work?

Basic operators

- get (manager -> agent)
 - Query for a value
- getnext (manager -> agent)
 - Get next value (e.g. list of values for a table)
- getresponse (agent -> manager)
 - Response to get, getnext, or set, includes error returns
- set (manager -> agent)
 - Set a value, or perform an action
- trap (agent -> manager)
 - Spontaneous notification from equipment (line down, temperature above threshold, ...)

How does SNMP work?

Query/response based

- Monitoring generally uses get, getnext, getbulk
- Changing state uses set
- Response is always a getresponse
- getbulk requires v2c or v3

Notifications are delivered as traps or informs

- traps are unacknowledged
- informs are acknowledged (v2c, v3)
- Use v2c format traps
- No one uses informs

The SNMP database

The information offered by a device is available its Management Information Base (MIB)

- SNMP uses Object Identifiers (OIDs) to organize this information
- OIDs are keys to identifying each piece of data
- OIDs are organized into a tree structure that is the M
- MIB files document parts of the MIB on a device

OIDs

OID: Object Identifier

- A unique key to select a particular item of data in the device
- The same piece of information is always found at the same OID. That's simple!
- An OID is a variable-length string of numbers, e.g.

```
.1.3.6.1.2.1.1.3
```

 Allocated hierarchically in a tree to ensure uniqueness (similar to DNS)

If Email Addresses were OIDs

user@nsrc.org

would have been something like:

user@nsrc.enterprises.private.internet.dod.org.isouser@99999.1.4.1.6.3.1

except that we reverse the ordering, putting iso(1) first:

.1.3.6.1.4.1.99999.117.115.101.114

Note the portion after 99999—it spells "user" in ascii dotted decimal!

Don't worry about the deeply branched tree. What matters is that OIDs are unique.

- Ensures vendors don't have conflicting OIDs
- The numeric OID is what gets sent on the wire

OIDs and MIB files

Read from left to right

OID components separated by '.'

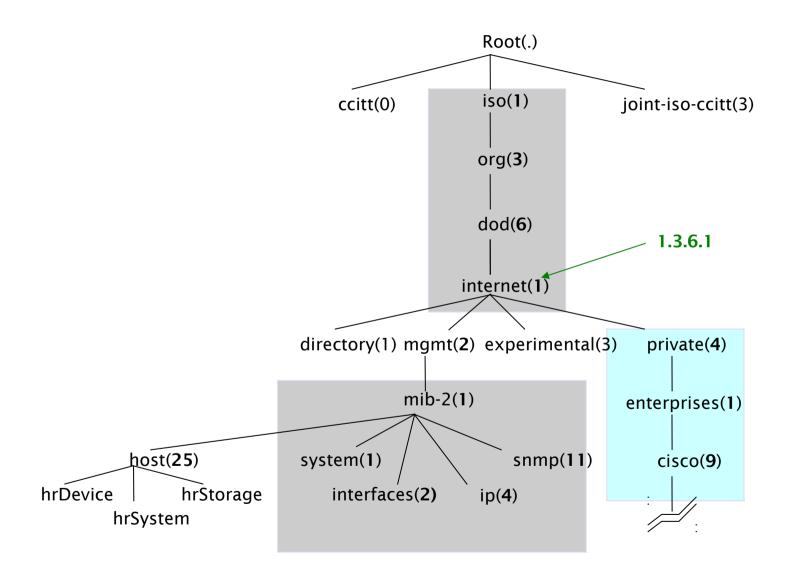
```
.1.3.6.1.4.1.9. ...
```

Each OID corresponds to a label

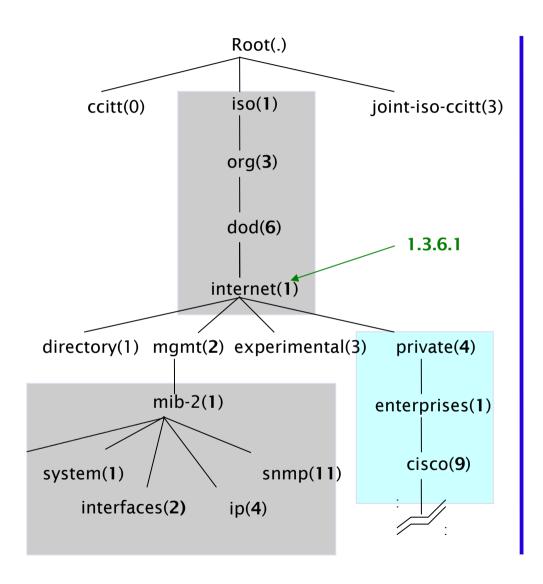
```
.1.3.6.1.2.1.1.5 => sysName
```

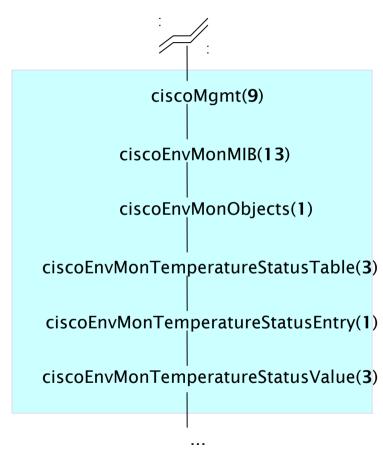
The complete path:

```
.iso.org.dod.internet.mgmt.mib-
2.system.sysName
```


How do we convert from OIDs to Labels (and vice versa)?

Use the MIBs files!


The MIB Tree



The MIB Tree

Interesting parts of the MIB tree

The Internet MIB, .1.3.6.1, really only two branches of interest:

Standard MIBs

```
.1.3.6.1.2.1 = .iso.org.dod.internet.mgmt.mib-2
```

Vendor-specific (proprietary) MIBs

```
.1.3.6.1.4.1=
.iso.org.dod.internet.private.enterprises
```

The IEEE has MIBs of interest in three parts of the tree:

• IEEE 802 MIBs, including LLDP

```
.1.0.8802 = .iso.standard.iso8802
```

• IEEE 802.3 MIBs, including LAG

```
.1.2.840.10006 = .iso.member-body.us.ieee802dot3
```

IEEE 802.11 wireless MIBs

```
.1.2.840.10036 = .iso.member-body.us.ieee802dot11
```


MIB Files

MIB files define the objects that can be queried, including:

- Object name
- Object description
- Data type (integer, text, list)

MIB files are structured text

 using an ASN.1 subset called the Structure of Management Information (SMI)

Standard MIB files include:

- MIB-II (RFC1213) a sub-group of MIBs
- HOST-RESOURCES-MIB (RFC2790)

MIB Sample

sysUpTime OBJECT-TYPE

This defines the object called sysUpTime.

SYNTAX TimeTicks

This object is of the type TimeTicks. Object types are specified in the SMI we mentioned a moment ago.

ACCESS read-only

This object can only be read via SNMP (i.e., get, getnext); it cannot be changed (i.e., set).

STATUS mandatory

This object must be implemented in any SNMP agent.

DESCRIPTION

A description of the object

```
::= { system 3 }
```

The sysupTime object is the third branch off of the system object group tree.

MIB Files

MIB files also make it possible to interpret a returned value from an agent

- For example, the status for a fan could be:
 - -1, 2, 3, 4, 5, or 6
 - What does it mean?
- Look for the Textual Convention (tc) in the MIE

MIB Sample

CiscoEnvMonState ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION

"Represents the state of a device being monitored. Valid values are:

normal(1): the environment is good, such as low

temperature.

warning(2): the environment is bad, such as temperature

above normal operation range but not too

high.

critical(3): the environment is very bad, such as

temperature much higher than normal

operation limit.

shutdown(4): the environment is the worst, the system

should be shutdown immediately.

notPresent(5): the environmental monitor is not present,

such as temperature sensors do not exist.

notFunctioning(6): the environmental monitor does not

function properly, such as a temperature

sensor generates a abnormal data like

1000 C.

SNMP and Security

SNMP versions 1 and 2c are insecure SNMP version 3 was created to fix this

SNMPv3 authentication is based on a user

- "User-based Security Model" (USM)
 - Authenticity and integrity
 - Keys are used for users and messages have digital signatures generated with a hash function (MD5 or SHA)
 - Privacy
 - Messages can be encrypted with secret-key (private) algorithms (DES or AES)
 - Temporary validity
 - Utilizes a synchronized clock with a 150 second window with sequence checking

SNMPv3 Security Levels

noAuthNoPriv

No authentication, no privacy

authNoPriv

Authentication with no privacy

authPriv

Authentication with privacy

Cisco SNMP Configuration

Read-only

snmp-server community NetManage RO

Enables SNMPv1 and v2c

```
snmp-server group ReadGroup v3 auth
snmp-server user admin ReadGroup v3 auth sha NetManage
```

- SNMPv3 authentication, no encryption

Read-write

```
snmp-server group WriteGroup v3 auth write v1default
snmp-server user admin-rw WriteGroup v3 auth sha NetManage priv aes 128
NetWrite
```

- Cisco allows authNoPriv and authPriv queries with this user
- You could also define a read-write user without encryption (priv)
- Note that we recommend using SNMP version 3 if you want write access using the **set** operator

Net-SNMP Configuration

Add a community string by editing /etc/snmp/snmpd.conf and adding:

```
rocommunity NetManage 10.10.0.0/16
```

Add the SNMPv3 user

```
# service snmpd stop
# net-snmp-create-v3-user -a SHA -A NetManage admin
# service snmpd start
```

Modify your user configuration file ~/.snmp/snmp.conf, adding:

```
defVersion 3
defCommunity NetManage
defSecurityName admin
defSecurityLevel authNoPriv
defAuthPassphrase NetManage
defAuthType SHA
```


Querying an SNMP agent

Using Net-SNMP command line tools...

Some typical commands for querying:

- snmpget
- snmpwalk
- snmpbulkwalk (requires v2c or v3)
- snmpstatus
- snmptable

Syntax:

```
snmpXXX -v1 -c<community> host [OID]
snmpXXX -v2c -c<community> host [OID]
snmpXXX -v3 -lauthNoPriv -u<user> -aSHA -A<pass> host [OID]
```

However, because you've setup the snmp.conf file, it's much easier

```
snmpxxx host [OID]
```

- Or, if you want to force the version to v2c, for example:

```
snmpxxx -v2c host [OID]
```


Querying an SNMP agent

Let's look at some examples

```
snmpstatus 10.10.0.254
snmpget 10.10.0.254 ifNumber.0
snmpwalk -v2c 10.10.0.254 ifDescr
```


Querying an SNMP agent

Community:

- A "security" string (password) to define whether the querying manager will have RO (read only) or RW (read write) access
- This is the simplest form of authentication in SNMP

OID

- A value, for example, .1.3.6.1.2.1.1.5.0
- or its name equivalent: sysName.0

Let's ask for the system's name (using the OID above)

- Why the .0? What do you notice?

Queries Using snmp.conf

Two walks:

```
# snmpwalk 10.10.0.252 sysUpTime
DISMAN-EVENT-MIB::sysUpTimeInstance =
Timeticks: (1946738) 5:24:27.38
# snmpwalk -v2c 3 10.10.0.252 sysUpTime
DISMAN-EVENT-MIB::sysUpTimeInstance =
Timeticks: (1953429) 5:25:34.29
```

First walk used SNMPv3 as it was the default in snmp.conf, second walk specified SNMPv2c, and used the community string from snmp.conf.

Failed Query...Why?

Two gets:

```
# snmpget -v1 10.10.0.252 ifHCInOctets.1
Error in packet
Reason: (noSuchName) There is no such variable name in this
MIB.
Failed object: IF-MIB::ifHCInOctets.1
# snmpget 10.10.0.252 ifHCInOctets.1
IF-MIB::ifHCInOctets.1 = Counter64: 475028252
```

Why? Notice the data type: Counter64. 64-bit counters are only supported in SNMPv2c and v3.

64-bit counters are important because 32-bit interface counters (ifInOctets) can wrap in 34 seconds on Gig interfaces.

How fast can it wrap on 10G?

SNMP failure: no response?

The device might be offline or unreachable

The device might not be running an SNMP agent

The device might be configured with a different
community string

The device might be configured to refuse SNMP queries from your IP address

In all of these cases you will get no response

SNMP Best Practices

- Secure your SNMP access and traffic:
 - Management VLAN
 - Access lists
 - Use SNMPv3 with authentication for queries and sets where possible
- Use SNMPv2c traps
 - Better formatted than v1 traps
 - Accurate timestamps
- Do no harm
 - Only poll as fast as you really need
 - Possible to drive CPU load on devices up and affect other protocol processing
 - It does no good to poll every 5 seconds if the device updates the counter every 10

Coming up in our exercises...

- Using snmpwalk, snmpget
- Config file: /etc/snmp/snmp.conf

- Running Linux SNMP agent (daemon)
- Config file: /etc/snmp/snmpd.conf

Loading MIBs

References

Essential SNMP (O'Reilly Books) Douglas Mauro, Kevin Schmidt

http://www.amazon.com/Essential-Second-Edition-Douglas-Mauro/dp/0596008406

Wikipedia

http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol

MIB/OID Browser

http://oid-info.com/

Cisco SNMP on IOS, MIB tools, and MIB/OID browser

- http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/snmp/command/nm-snmp-cr-book.html
- http://tools.cisco.com/ITDIT/MIBS/servlet/index
- http://tools.cisco.com/Support/SNMP/do/BrowseOID.do?local=en&substep=2&translate=Translate&tree=N

Open Source Java MIB Browser

http://www.dwipal.com/mibbrowser.htm

SNMP Link – collection of SNMP resources

http://www.snmplink.org/

Net-SNMP Open Source SNMP tools

http://net-snmp.sourceforge.net/

Integration with Nagios

https://web.archive.org/web/20100614010336/http://www.cisl.ucar.edu/nets/tools/nagios/SNMP-traps.html

SNMP Versions

v1 Original specification RFCs 1155,1157,1213

v2 Security+new data types+new operators RFCs 1901,1909-1910,2011,2576,2578-2580,3416-3418

v2c De facto standard

Documented in RFC 3584

v3 Robust security: USM/VACM

RFCs 3411-3415,3417-3418,3826,5343,5345,5590

RFC 3584 specifies coexistence between versions

