Wireless Authentication

Network Startup Resource Center www.nsrc.org

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

What is Authentication?

- Verifying the claim that an entity is allowed to act on behalf of a given known identity
- More simply:
 - Is this person says who they say they are?
 - Can they prove it
 - for example, with password, signature?
 - In our case, the entity is the software, acting on behalf of the user controlling the computer.

Why Is It So Complicated?

- I am on a computer. Am I its owner?
 - Device is not the same as person.
- I am a network administrator
 - Should I have access to the finance system?
- I am connecting to the network from home
 - Should I have access to all my work resources?

Authentication Core Concepts

- These are all different concepts:
 - Confidentiality
 - Access Control
 - Authentication
 - Authorization

Confidentiality

Ensure that only those who should have access to information can indeed do so (usually encryption)

Authorization

Authorization defines what an entity (a user, a device) is authorized (allowed), to access

- Which networks (ACLs/filters)
- Which systems, which files ? (FS ACLs, permissions)
- When can they do that (time policies)?
- Can they run an application or access a service?

Access Control

Access control is the mechanisms by which rights &restrictions are controlled & enforced

Why Do We Authenticate?

- We want to know: WHO, WHERE(*), WHEN
 - Which user?
 - What AP did they associate with?
 - When did they log on ?
 - What IP number did they have?
- PSK (Pre-Shared Key) cannot tell us this.
 - Keys can be shared between users
 - We can't know who, where, or when.

Authentication Solutions

- We recommended two ways to do this:
 - Captive portal
 - 802.1X (EAPoL and EAP-TLS) (Preferred)
- Your choice depends on
 - The size of your organization
 - The maturity of your IT systems
 - Your human resources
 - Available user stores, databases
 - For example, Active Directory or LDAP

Captive Portals: Positive

- Popular (public areas, airports, hotels...)
- Flexible
- Self-explanatory (web page), can enforce AUP (Acceptable Use Policy) validation
- Relatively easy to implement

Captive Portals: Negative

- Not transparent
- Depend on browser
- Not standardized (different looks, different credentials, ...)
- Requires regular re-authentication (disruptive)
- Often unreliable and easy to break

Captive Portals: Redirection

- Any of the following methods can be used:
 - HTTP silent redirection
 - HTTP 30x redirect
 - IP hijacking
 - DNS hijacking
 - Certain URLs may be allowed
 - e.g. Information, help, use policies pages

Captive Portals: Vendors

- Many vendors and open source projects
 - CoovaChilli, CoovaAP
 - WiFidog
 - M0n0wall, pfSense
 - zeroshell
- Many networking vendors offer captive portals
 - Aptilo, Aruba, Cisco, HP, Mikrotik, Ubiquiti

802.1x/EAP (WPA2 Enterprise)

- Originally designed for wired networks (EAPoL)
- Modified for wireless networks (RFC5216)
- Layer 2 protocol with 4 states:
 - 1. Initialization (all traffic including DHCP)
 - 2. Initiation (authenticator sends EAP-Requests, and client responds with EAP-Response-Identity)
 - 3. Negotiation of a method of authentication
 - 4. Authentication if negotiation succeeds
- Traffic is allowed through

802.1x/EAP – How does it work

Internet or other LAN resources

Source: Wikipedia

802.1x/EAP

- Positive
 - Transparent for Applications
 - In-line: does not require interaction with upper layers like DHCP, IP, HTTP to function
 - Standardized for both wired and wireless LANs
- Negative
 - More challenging in deployment
 - Requires external authentication server (RADIUS)

802.1x & EAP vs Captive Portals

Captive Portals

- Intuitive & easy for first time users and guests
- Can guide guests, provide information & help

• 802.1x

- Is streamlined & standardized for regular access
 - Making it preferable for known users
- But there's overhead for first-time users

Combining both may be useful

- 802.1x can be used on all LAN/WLAN
- Captive portals can be used on guest Wi-Fi SSIDs

802.1x & EAP vs Captive Portals

- 802.1x operates at Layer 2
- Captive Portals operate at Layers 3-7
- Both need authentication back-ends:
 - SQL or LDAP/Active Directory
 - Can be local flat text file
 - (only for small organizations, or as start/test)
- Back-ends can be shared between technologies
 - (captive portal + 802.1x)
- RADIUS can use any of the above solutions

Authentication in the Core Network

802.1x Security Problems

- 802.1x or WPA2/EAP is the recommended authentication option, but has security problems
- Outer tunnels rely on TTLS/SSL certificates
 - These are vulnerable to man-in-the-middle attacks if the client device does not properly check the certificate, then it will give its credentials to ANY AP, e.g. rogue APs
- Inner tunnel authentication is MSCHAP2
 - MSCHAP2 is known to be compromised

802.1x Security Problems

- Client devices that do not check certificates...
 - Will give their credentials to any AP, even a rogue one!
 - Are vulnerable to man-in-the-middle attacks.
- Nothing can protect clients that don't check...
 - CN (Common Name) or CA (Certificate Authority)
- However we can protect our networks
 - We can enforce the best possible client configuration, for example using the eduroam CAT tool. https://cat.eduroam.org
 - See also security recommendations on https://wiki.geant.org/

802.1x MITM Attack

- Get user to associate to rogue AP and start handshake & Authentication process
- Packet dump everything
- Analyze the traffic, isolate the handshake
- The outer tunnel is easy as the attacker owns certificate and keys
- The inner tunnel (typically MSCHAP2) can be cracked (via offline or online services)

NSRC Recommends

- User store in LDAP/AD, e.g. OpenLDAP
- RADIUS, e.g. FreeRADIUS
- Despite the security problems...
- 802.1x remains the best option
- Captive Portal is a valid second option

eduroam

A recommended addition to your campus networks authentication is eduroam:

Website

An international roaming service

for users in research, higher education and further education.

Learn more at: eduroam.org

www.eduroam.org &

