Campus Network Design Workshop

Introduction to Network Address Translation

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

Network Address Translation

- NAT has become a commonly used technique for prolonging the use of IPv4 on today's Internet
 - Originally designed as a means of allowing isolated networks to connect to Internet without renumbering into public IP address space
- Presentation introduces NAT terminology, the typical use case in a Campus Network, and sample Cisco IOS configuration

Network Address Translation

- NAT is translation of one IP address into another IP address
- NAPT (Network Address & Port Translation) translates multiple IP addresses into one other IP address
 - TCP/UDP port distinguishes different packet flows
- NAT-PT (NAT Protocol Translation) is a particular technology which does protocol translation in addition to address translation
 - NAT-PT is has long been made obsolete by the IETF

Carrier Grade NAT (CGN)

- Service Provider version of subscriber NAT
 - Subscriber NAT can handle only hundreds of translations
 - ISP NAT can handle millions of translations
 - Expensive high performance hardware
- Not limited to just translation within one address family, but does address family translation as well
- Sometimes referred to as Large Scale NAT (LSN)

NAT Use Case

- A campus network does not have sufficient public IPv4 address space to address all the devices on their network
- Their service provider lets them use a small range of addresses – e.g. /28
- The campus might divide the address space into two /29s
 - One /29 for services requiring public IP addresses
 - One /29 for translating internal addresses to public addresses

NAT Use Case

- The /29 for public services:
 - Total of 8 addresses in the subnet
 - 1 address reserved for the gateway router
 - 2 addresses reserved for the subnet
 - 5 addresses available for servers & services
- The /29 for address translation:
 - Campus uses NAPT (network address and port translation) allowing mapping of multiple internal addresses to up to 8 external addresses

How NAPT works

- NAPT allows mapping of multiple internal addresses to one external address.
 - Each TCP or UDP session is mapped to one TCP or UDP port of an external address
 - There are ~65000 TCP and UDP ports
 - Typical end user device consumes ~400 TCP and UDP ports at any one time
 - Which allows around 150 end user devices per public IP address
- One /29 would allow only 1200 simultaneous fully active end user devices

Squeezing more out of NAPT

- Network operators squeeze more internal users through NAPT devices by:
 - Reducing translation session timeouts
 - Cisco default is 24 hours!!
 - Reducing the number of TCP & UDP sessions any one internal user can have
 - Shows up as broken mapping applications
 - Shows up as "stuck internet"
 - Shows up as "sites unreachable"
 - Deploying IPv6 (!) which reduces the NAPT burden
 - Most large/popular content providers now support IPv6

Campus Use Case

Upstream provider

100.64.10.0/30 BR

- NAT implemented on border router
- Public Services LAN uses public IP address block
 - 100.64.10.64/28 from Upstream
- Rest of Campus uses private address space
 - **192.168.0.0/16**

Typical Cisco configuration (1)

- NAT Configuration set up on Border Router
- Define the address range we want to NAT

```
ip access-list extended NATplus
deny ip 100.64.10.0 0.0.0.255 any
deny ip 192.168.0.0 0.0.255.255 192.168.0.0 0.0.255.255
permit ip 192.168.0.0 0.0.255.255 any
deny ip any any log
```

- This says:
 - Don't NAT any of 100.64.10.0/24
 - Don't NAT internal traffic should it come via this router
 - NAT internal to any external
 - Anything that doesn't match is logged to catch "errors"

Typical Cisco configuration (2)

Define the external interface we want to NAT to:

```
interface GigabitEthernet 0/1
  description Link to ISP
  ip address 100.64.10.2 255.255.252
  ip nat outside
!
```

Define the internal interface we want to NAT from:

```
interface GigabitEthernet 0/2
description Link to Campus Core Switch
ip address 192.168.255.1 255.255.252
ip nat inside
!
```


Typical Cisco configuration (3)

Modifying the default translation timeouts:

```
ip nat translation dns-timeout 600
ip nat translation icmp-timeout 600
ip nat translation tcp-timeout 600
ip nat translation udp-timeout 600
```

- This will
 - Set the translation timeouts for DNS, ICMP, TCP and UDP to be 600 seconds
 - Timeout is when there is no more traffic using that mapping
 - Other translation timeout options are available in Cisco IOS too but the above are the most commonly used

Typical Cisco configuration (4a)

Activating the NAT on ONE IPv4 address

ip nat inside source list NATplus interface Gigabit 0/1 overload

- This will
 - match the NATplus list for traffic going from Gigabit 0/2 to Gigabit 0/1
 - Overload means use NAPT (one to many mapping using TCP/UDP ports)
 - NAPT will use the IP address of the Gigabit 0/1 port to map all the internal addresses to
- Campus traffic will appear as though it is all originated from the 100.64.10.2 address

Typical Cisco configuration (4b)

- Activating the NAT on an IPv4 address pool
- First create the public address pool:

```
ip nat pool CAMPUS 100.64.10.65 100.64.10.68 prefix-length 28
```

- Which defines the pool CAMPUS having 4 IP public IP addresses out of the 100.64.10.64/28 address block given to the campus
- Now enable NAT

```
ip nat inside source list NATplus pool CAMPUS overload
```

 Which will match all traffic in the NATplus list translating it into the address pool CAMPUS

Diagnosis on a Cisco Router

To find out what is being translated:

```
Router# show ip nat translations
Pro Inside global Inside local Outside local Outside global
...

udp 100.64.10.2:20480 192.168.0.65:20480 193.0.0.228:33436 193.0.0.228:33436
udp 100.64.10.2:20482 192.168.0.65:20482 192.5.5.241:33436 192.5.5.241:33436
udp 100.64.10.2:20483 192.168.0.65:20483 192.36.148.17:33436 192.36.148.17:33436
udp 100.64.10.2:20484 192.168.0.65:20484 202.12.27.33:33436 202.12.27.33:33436
udp 100.64.10.2:20485 192.168.0.65:20485 199.7.83.42:33436 199.7.83.42:33436
udp 100.64.10.2:20486 192.168.0.65:20486 198.41.0.4:33436 198.41.0.4:33436
udp 100.64.10.2:20487 192.168.0.65:20487 192.228.79.201:33436 192.228.79.201:33436
```

- This shows
 - The local public IP address: UDP port
 - The local internal address and UDP port it maps to
 - And then the global destination addresses & ports

Summary

- NAPT is useful technique for connecting large numbers of campus network devices to the public IPv4 Internet when the campus has limited or no public IPv4 address space
 - Private address space used for campus networks:
 - 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16
- Border router is the most common location of the NAT device
 - Be aware of CPU loading though
- Be aware of NAT scaling limitations

Aside: NAT Issues (1)

- How to scale NAT performance for large networks?
 - Limiting tcp/udp ports per user harms user experience
 - Redesigning network
- Breaks the end-to-end model of IP
- Breaks end-to-end network security
- Breaks non-NAT friendly applications
 - Or NAT has to be upgraded (if possible)
- Content cannot be hosted behind a NAT

Aside: NAT Issues (2)

- Makes fast rerouting and multihoming more difficult
 - Moving IPv4 address pools between CGNs for external traffic engineering
- Address sharing has reputation, reliability and security issues for end-users
- NAT device keeps the state of the connections
- Makes the NAT device a target for miscreants due to possible impact on large numbers of users

Aside: NAT Issues (3)

- Consumer NAT device:
 - 5000 sessions means only 12 connected devices!
 - "NAT table FULL" error messages
 - "Broken Googlemaps"
 - "Stuck Internet"
- Carrier Grade NAT device:
 - 20 million sessions (Cisco ASR9001 ISM)
 - Which realistically is 50k users (400 sessions per user)
 - RIR 2x final IPv4 /22s only allows 640k users ☺

Questions?

