Campus Network Design Workshop

Campus Network Security: High Level Overview

This document is a result of work by the Network Startup Resource Center (NSRC at http://www.nsrc.org). This document may be freely copied, modified, and otherwise re-used on the condition that any re-use acknowledge the NSRC as the original source.

Campus Networks and Security

- Goal: Prepare for problems you will have
 - You will have compromises and hackers
 - You will have viruses
- You get a call from your ISP saying that they have a report that one of your hosts is participating in a Denial of Service (DoS) attack
 - What do you do?

UNIVERSITY OF OREGON

– How do you find the host (very hard if NAT)?

Security is a Process

- You can never achieve security it is a process that you have to continually work on
 - Assessment what is at risk
 - Protection efforts to mitigate risk
 - Detection detect intrusions or problem
 - Response respond to intrusion or problem
 - Do it all over again

Security Policy Framework

- Why is policy important?
 - How do your users know what is permissible?
 - How do you know what you can do?
 - Can you disconnect users from the network?
 - Can you eavesdrop on network traffic?
- What do you include?
 - Typical policy framework for a University is an "Acceptable Use Policy" or AUP
 - Google "University Acceptable Use Policy"

Typical Acceptable Use Policy

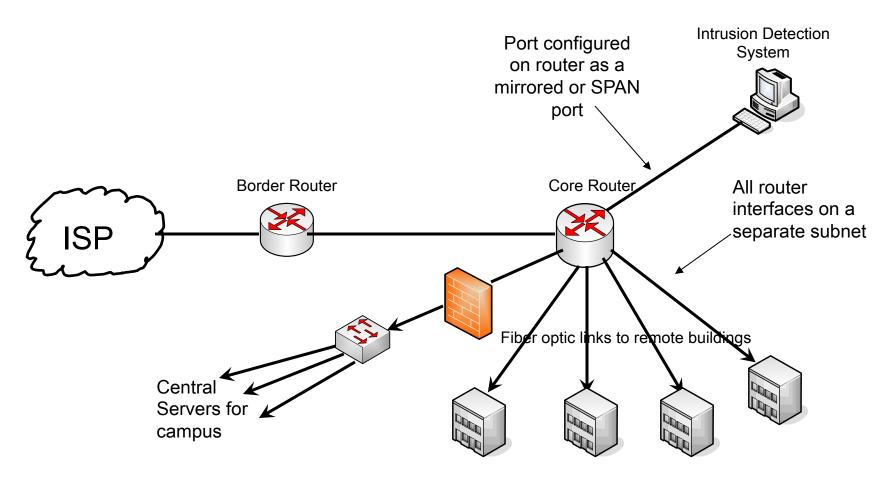
- Use of University computing and network for Universityrelated use only (prohibits commercial use)
- Shall not interfere with use of computing or network of others (prohibits hogging of resources)
- Copyright must be respected
- Violators can be denied access
- Use of computing and network is not private and can be monitored by IT Staff
- And more. Use Google and find examples
- Make this an official University Policy so that violations of AUP will be treated as violations of University policy

Design with Security in Mind

- Segmentation and IP addressing schemes
 - Follow campus network best practices
 - Route in the core
 - One IP Subnet per building
 - Put campus-level servers on IP subnet that is separate from users
 - Servers with sensitive information might be on a different subnet as something like Moodle

Where to put Firewalls

- Typical recommendation for firewalls is based on old experience with Windows prior to XP service pack 2
 - Windows firewall turned off, windows
 machines would get infected from the Internet
- Firewalls should only protect critical assets
- Campuses are not corporate environments
 - Should have campus network be as open as possible


Firewall Placement

- Firewalls don't protect users from getting viruses that come via two mechanisms
 - "clicked links" while web browsing
 - Email attachments
 - Both are encrypted and firewalls won't help
- As bandwidth increases, in-line firewalls limit performance for all users. This gets to be a bigger problem at higher speeds.

Typical Design

Security Foundation

- You must have managed equipment in your network
- You must have some basic network management running
- Network Management is the foundation that much of the security framework operates on

Key Network Management Tools

- Are some devices not responding or responding poorly, possibly because of a DOS attack or breakin?
 - Nagios
 - Smokeping
- Are you seeing unusual levels of traffic?
 - Cacti

Network Traffic Analysis

- It is important to know what traverses your network
 - You learn about a new virus and find out that all infected machines connect to 128.223.60.21
 - What machines have connected?
- What tools are available?
 - netflow: you will learn about this
 - Snort: open source intrusion detection system that is very useful to find viruses

Log Analysis

- Can be just as important as traffic analysis
- Central syslog server and gather logs from:
 - DHCP server, DNS servers, Mail servers, switches, routers, etc.
 - Now, you have data to look at
 - Given an IP, you can probably find user
- Lots of tools to correlate logs and alarm on critical events

Centralized Authentication

- AAA: Authorization, Authentication, and Accounting
- Central database of users
 - Can be a single system that everyone has a login (or password file entry)
 - LDAP or Microsoft Active Directory
- Systems and Devices use database
 - Protocols: Radius, LDAP, Kerberos, LDAP, and Active Directory

Encryption

- Encryption is important
 - Protect sensitive data
 - Protect passwords
- Disable clear-text password protocols
 - Disable telnet, ftp (and use ssh, scp)
 - Only allow TLS based POP and IMAP
 - Move all web traffic to HTTPS that involves passwords or sensitive data

SSL Certificates

- Don't use self-signed for public services
 - They teach users bad habits
- Get certificates from well known certificate authorities (CA)
- Larger campus may want to provide certificate service

Wireless

- Best practice is to authenticate users
 - This allows you to know who your users are
 - Requires central AAA database
 - Log the access to your central syslog server
- How to do this
 - Captive Portal
 - 802.1x WPA2 Enterprise
- Who can install access points (AUP)?

Virus Protection

- Most viruses are spread through the action of users
 - Clicking "OK" or "Install" when they shouldn't
 - Firewalls generally won't help
 - Windows needs virus protection software (is MS Security Essentials enough?)
- Server-based viruses or intrusions are typically caused from external attacks
 - Firewalls might help

Responding to Incidents

- This is not an "if", but "when". You will have incidents.
- Need to establish policy & procedures
- This is different from an AUP it is an internal operating policy
 - Who do you notify?
 - Can you disconnect a system from the network?

High Level Wrapup

- Security is hard you are never done
 - You are always in the Assessment, Prevention,
 Detection, Response cycle
- Many security tools and practices builds upon your network management framework
 - Build your network management framework first and get started on all of this
- Acceptable Use Policy a high priority

Resources

- Lots of resources on the Internet
 - www.sans.org
 subscribe to the SANS newsletter
 - http://www.team-cymru.org/templates.html a great set of templates for secure configuration of routers and some services
 - <u>www.cert.org</u> a good resource for lists of vulnerabilities
 - <u>www.google.com</u> having a problem?
 Seeing an error message? Google it.

Questions/Discussion?

This document is a result of work by the Network Startup Resource Center (NSRC at http://www.nsrc.org). This document may be freely copied, modified, and otherwise re-used on the condition that any re-use acknowledge the NSRC as the original source.

