Campus Network Design Workshop

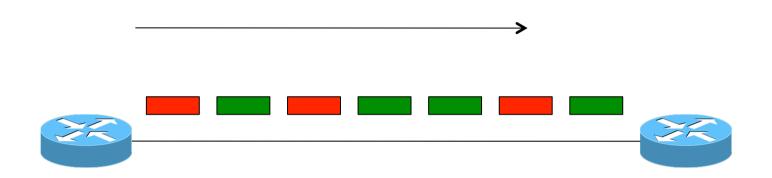
Introduction to Netflow

This document is a result of work by the Network Startup Resource Center (NSRC at http://www.nsrc.org). This document may be freely copied, modified, and otherwise re-used on the condition that any re-use acknowledge the NSRC as the original source.

Agenda

- Netflow
 - What it is and how it works
 - Uses and applications
- Generating and exporting flow records
- Nfdump and Nfsen
 - Architecture
 - Usage
- Lab

What is a Network Flow


- A set of related packets
- Packets that belong to the same transport connection. e.g.
 - TCP, same src IP, src port, dst IP, dst port
 - UDP, same src IP, src port, dst IP, dst port
 - Some tools consider "bidirectional flows", i.e. A->B and B->A as part of the same flow

http://en.wikipedia.org/wiki/Traffic_flow_(computer_networking)

Simple flows

- = Packet belonging to flow X
- = Packet belonging to flow Y

Cisco IOS Definition of a Flow

- Unidirectional sequence of packets sharing:
 - Source IP address
 - Destination IP address
 - Source port for UDP or TCP, 0 for other protocols
 - Destination port for UDP or TCP, type and code for ICMP, or 0 for other protocols
 - IP protocol
 - Ingress interface (SNMP ifIndex)
 - IP Type of Service

IOS: which of these six packets are in the same flows?

	Src IP	Dst IP	Protocol	Src Port	Dst Port
Α	1.2.3.4	5.6.7.8	6 (TCP)	4001	22
В	5.6.7.8	1.2.3.4	6 (TCP)	22	4001
С	1.2.3.4	5.6.7.8	6 (TCP)	4002	80
D	1.2.3.4	5.6.7.8	6 (TCP)	4001	80
E	1.2.3.4	8.8.8.8	17 (UDP)	65432	53
F	8.8.8.8	1.2.3.4	17 (UDP)	53	65432

IOS: which of these six packets are in the same flows?

	Src IP	Dst IP	Protocol	Src Port	Dst Port
Α	1.2.3.4	5.6.7.8	6 (TCP)	4001	22
В	5.6.7.8	1.2.3.4	6 (TCP)	22	4001
С	1.2.3.4	5.6.7.8	6 (TCP)	4002	80
D	1.2.3.4	5.6.7.8	6 (TCP)	4001	80
Е	1.2.3.4	8.8.8.8	17 (UDP)	65432	53
F	8.8.8.8	1.2.3.4	17 (UDP)	53	65432

Flow Accounting

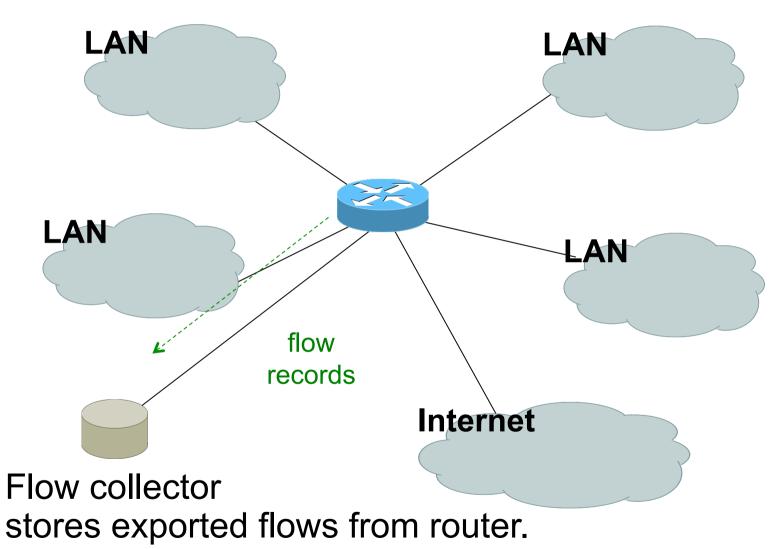
- A summary of all the packets seen in a flow (so far):
 - Flow identification: protocol, src/dst IP/port...
 - Packet count
 - Byte count
 - Start and end times
 - Maybe additional info, e.g. AS numbers, netmasks
- Records traffic volume and type but not content

Uses and Applications

- You can answer questions like:
 - Which user / department has been uploading / downloading the most?
 - Which are the most commonly-used protocols on my network?
 - Which devices are sending the most SMTP traffic, and to where?
- Identification of anomalies and attacks
- More fine-grained visualisation (graphing) than can be done at the interface level

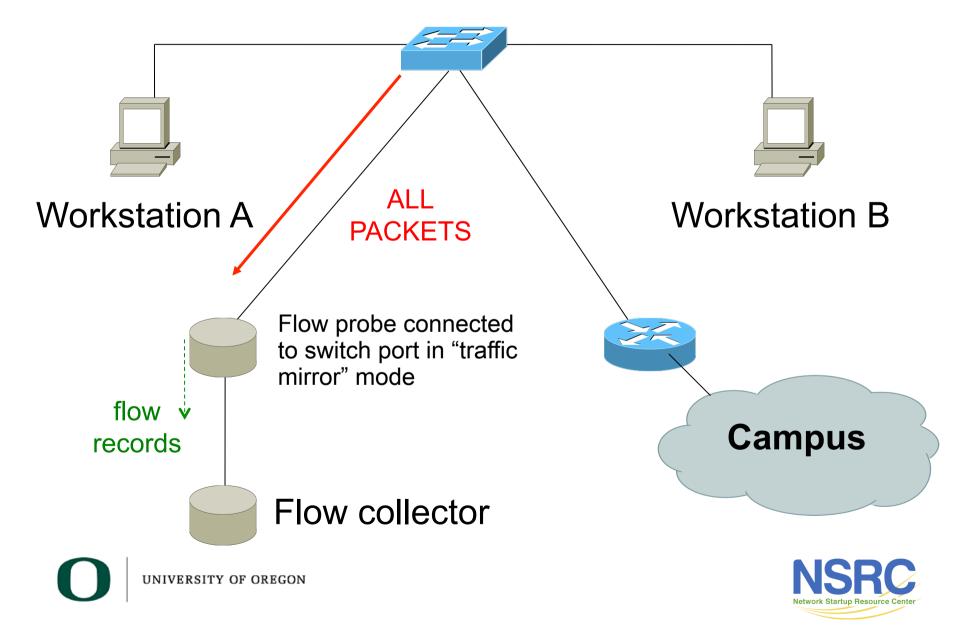
Working with flows

- Configure device (e.g. router) to generate flow accounting records
- 2. Export the flows from the device (router) to a collector (PC)
 - Configure protocol version and destination
- 3. Receive the flows, write them to disk
- 4. Analyse the flows
- Many tools available, both free and commercial


Where to generate flow records

- 1. On a router or other network device
 - If the device supports it
 - No additional hardware required
 - Might have some impact on performance
- 2. Passive collector (usually a Unix host)
 - Receives a copy of every packet and generates flows
 - Requires a mirror port
 - Resource intensive

Flow Collection


Flow Collection

- All flows through router can be observed
- Router overhead to process & export flows
- Can select which interfaces Netflow collection is needed on and not activate it on others
- If router on each LAN, Netflow can be activated on them to reduce load on core router

Passive Monitor Collection

Passive Collector

- Examples
 - softflowd (Linux/BSD)
 - pfflowd (BSD)
 - ng_netflow (BSD)
- Collector sees all traffic through the network point it is connected on and generates flows
- Relieves router from processing traffic, creating flows and exporting them

A thought:

Your network probably already has a device which is keeping track of IP addresses and port numbers of traffic flowing through it.

What is it?

Flow Export Protocols

- Cisco Netflow, different versions
 - v5: widely deployed
 - v9: newer, extensible, includes IPv6 support
- IP Flow Information Export (IPFIX):
 - IETF standard, based on Netflow v9
- sFlow: Sampling-based, commonly found on switches
- jFlow: Juniper
- We use Netflow, but many tools support multiple protocols

Cisco Netflow

- Unidirectional flows
- IPv4 unicast and multicast
 - (IPv6 in Netflow v9)
- Flows exported via UDP
 - Choose a port. No particular standard, although 2055 and 9996 are commonly used
- Supported on IOS, ASA and CatOS platforms but with different implementations

Cisco IOS Configuration

- Configured on each interface
 - Inbound and outbound
 - Older IOS only allows input
- Define the version
- Define the IP address and port of the collector (where to send the flows)
- Optionally enable aggregation tables
- Optionally configure flow timeout and main (v5) flow table size
- Optionally configure sample rate

Configuring Netflow: the old way

Enable CEF

```
ip cef
ipv6 cef
```

Enable flow on each interface

```
ip route cache flow
   OR

ip flow ingress
ip flow egress
(IOS 12.4 onwards)
```

Exporting Flows to a collector

```
ip flow-export version [5|9] [origin-as|peer-as]
ip flow-export destination <x.x.x.x> <udp-port>
```


"Flexible Netflow: the new way"

- Only way to monitor IPv6 flows on modern IOS
- Start using it now IPv6 is coming / here
- Many mind-boggling options available, but basic configuration is straightforward

Flexible Netflow Configuration

Define one or more exporters:

```
flow exporter EXPORTER-1
destination 192.0.2.99
transport udp 9996
source Loopback0
template data timeout 300
```


Flexible Netflow Configuration

Define one or more flow monitors:

```
flow monitor FLOW-MONITOR-V4
exporter EXPORTER-1
cache timeout active 300
record netflow ipv4 original-input
```

```
flow monitor FLOW-MONITOR-V6
exporter EXPORTER-1
cache timeout active 300
record netflow ipv6 original-input
```


Flexible Netflow Configuration

Apply flow monitors to active interface

```
interface GigabitEthernet0/0/0
ip flow monitor FLOW-MONITOR-V4 input
ip flow monitor FLOW-MONITOR-V4 output
ipv6 flow monitor FLOW-MONITOR-V6 input
ipv6 flow monitor FLOW-MONITOR-V6 output
```


"Top-talkers"

You can summarise flows directly on the router e.g.

```
show flow monitor FLOW-MONITOR-V4 cache aggregate ipv4 source address ipv4 destination address sort counter bytes top 20
```

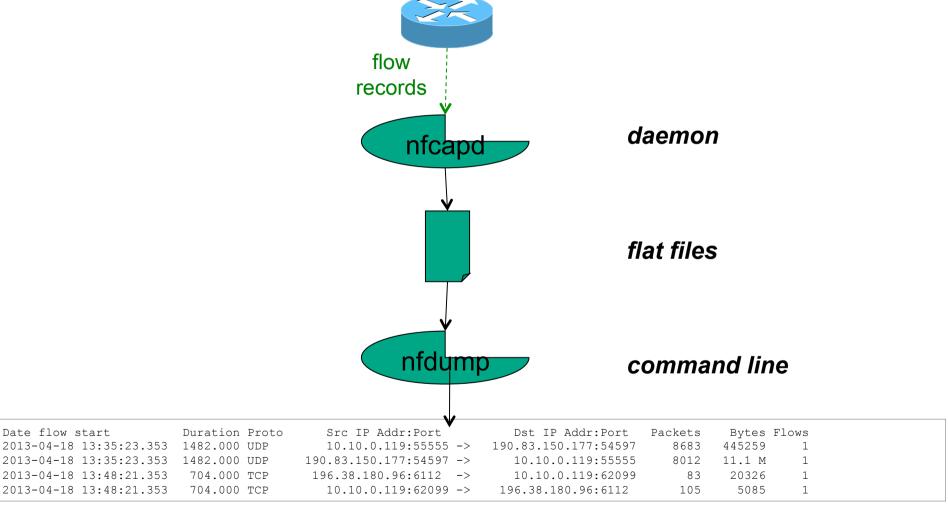
- Yes, that is one long command!
- Old command not available for Flexible Netflow

```
show ip flow top-talkers
```

Make an alias:

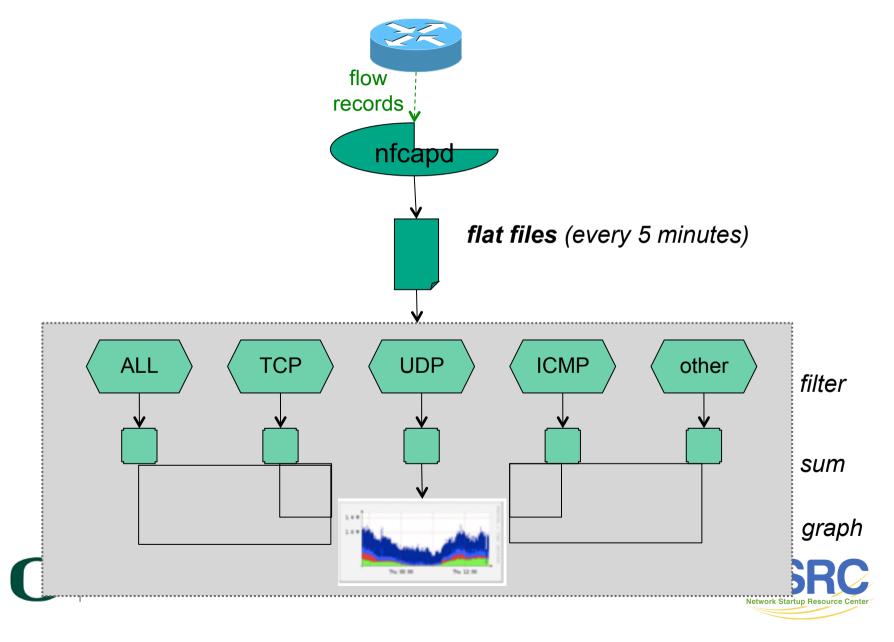
```
conf t
alias exec top-talkers show flow ...
```


Questions?


Collecting flows: nfdump

- Free and open source Runs on collector
- nfcapd listens for incoming flow records and writes them to disk (flat files)
 - typically starts a new file every 5 minutes
- nfdump reads the files and turns them into human-readable output
- nfdump has command-line options to filter and aggregate the flows

Nfdump architecture


Analysing flows: nfsen

- λ Companion to nfdump
- λ Web GUI
- λ Creates RRD graphs of traffic totals
- Lets you zoom in to a time of interest and do nfdump analysis
- λ Manages nfcapd instances for you
 - Can run multiple nfcapd instances for listening to flows from multiple routers
- ρ Plugins available like port tracker, surfmap

nfsen architecture

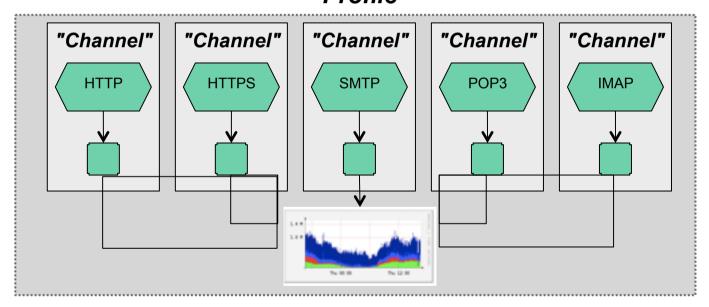
nfsen: points to note

- Every 5 minutes nfcapd starts a new file, and nfsen processes the previous one
- Hence each graph point covers 5 minutes
- The graph shows you the total of selected traffic in that 5-minute period
- To get more detailed information on the individual flows in that period, the GUI lets you drill down using *nfdump*

Demonstration

 Now we will use nfsen to find biggest users of bandwidth

Profiles and Channels


- A "channel" identifies a type of traffic to graph, and a "profile" is a collection of channels which can be shown together
- You can create your own profiles and channels, and hence graphs. e.g.
 - Total HTTP, HTTPS, SMTP traffic (etc)
 - Traffic to and from the Science department
 - **—** ...
- Use filters to define the traffic of interest

Profiles and Channels

"Profile"

filter

sum

graph

References – Tools

- nfdump and nfsen:
 - http://nfdump.sourceforge.net/
 - http://nfsen.sourceforge.net/
 - http://nfsen-plugins.sourceforge.net/
- pmacct and pmgraph:
 - http://www.pmacct.net/
 - http://www.aptivate.org/pmgraph/
- flow-tools:
 - http://www.splintered.net/sw/flow-tools

References – Further Info

- WikiPedia:
 - http://en.wikipedia.org/wiki/Netflow
- IETF standards effort
 - http://www.ietf.org/html.charters/ipfix-charter.html
- Abilene NetFlow page
 - http://abilene-netflow.itec.oar.net/
- Cisco Centric Open Source Community
 - http://cosi-nms.sourceforge.net/related.html
- Cisco NetFlow Collector User Guide
 - http://www.cisco.com/en/US/docs/net_mgmt/ netflow_collection_engine/6.0/tier_one/user/guide/user.html

Questions?

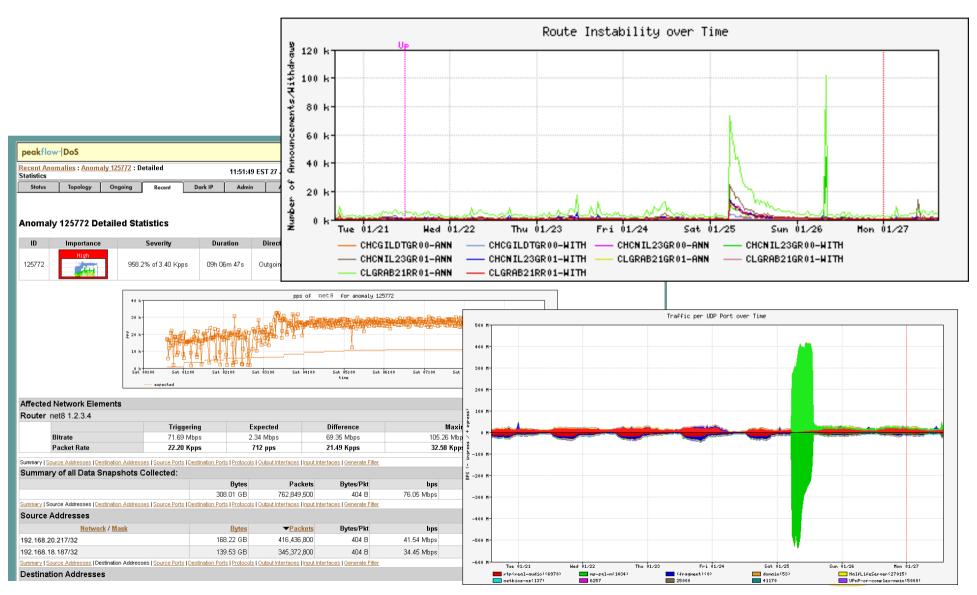
• (Additional Reference Materials Follow)

Filter Examples

```
all traffic
any
                                  only TCP traffic
proto tcp
dst. host 1.2.3.4
                                  only traffic to 1.2.3.4
dst net 10.10.1.0/24
                                  only traffic to that range
not dst net 10.10.1.0/24
                                 only traffic <u>not</u> to that range
proto tcp and src port 80 only TCP with source port 80
dst net 10.10.1.0/24 or dst net 10.10.2.0/24
                                  only traffic to those nets
dst net 10.10.1.0/24 and proto tcp and src port 80
                                  only HTTP response traffic to that net
(dst net 10.10.1.0/24 or dst net 10.10.2.0/24) and proto tcp and src port
80
        ...more complex combinations possible
```


Flows and Applications

More Examples

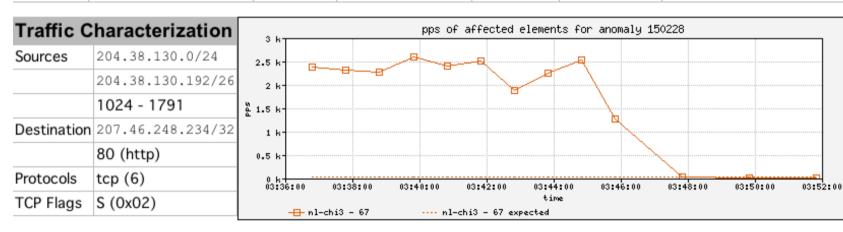

Uses for Netflow

- Problem identification / solving
 - Traffic classification
 - DoS Traceback (some slides by Danny McPherson)
- Traffic Analysis and Engineering
 - Inter-AS traffic analysis
 - Reporting on application proxies
- Accounting (or billing)
 - Cross verification from other sources
 - Can cross-check with SNMP data

Detect Anomalous Events: SQL 'Slammer' Worm*

Flow-based Detection (cont)*

- Once baselines are built anomalous activity can be detected
 - Pure rate-based (pps or bps) anomalies may be legitimate or malicious
 - Many misuse attacks can be immediately recognized, even without baselines (e.g., TCP SYN or RST floods)
 - Signatures can also be defined to identify "interesting"
 - transactional data (e.g., proto udp and port 1434 and 404 octets(376 payload) == slammer!)
 - Temporal compound signatures can be defined to detect with higher precision

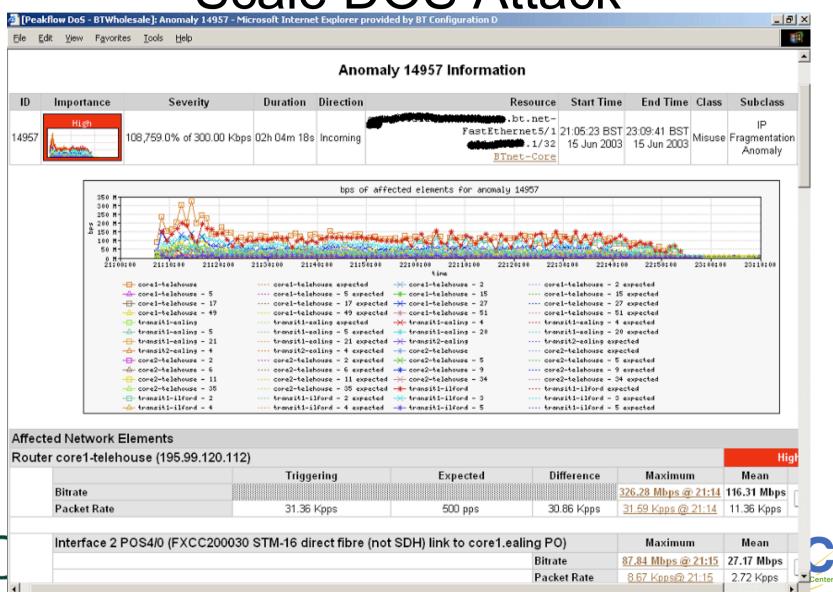


Flow-based Commercial Tools...*

Anomaly 150228

Get Report: PDF XML

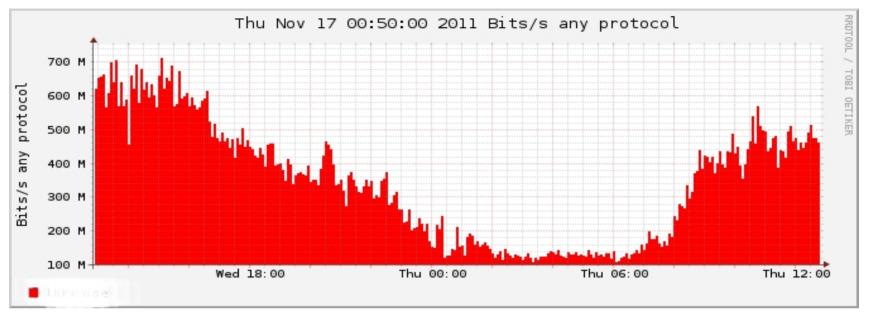
ID	Importance	Duration	Start Time	Direction	Type	Resource
150228	High 130.0% of 2 Kpps	17 mins	03:34, Aug 16	Incoming	Bandwidth (Profiled)	Microsoft 207.46.0.0/16 windowsupdate.com

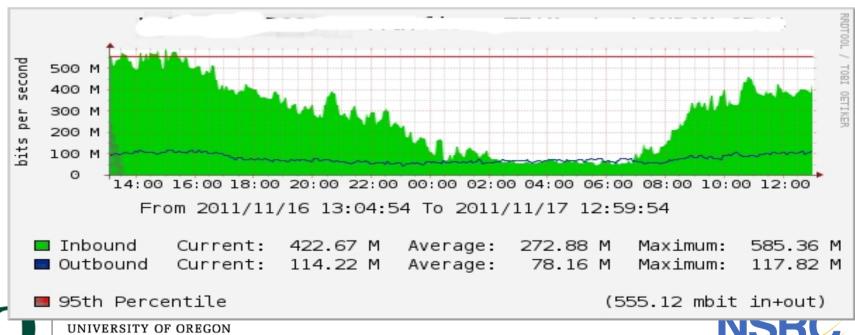


Affected Network Elements	Expected	Observed bps		Observed pps			
	Importance	pps	Max	Mean	Max	Mean	
Router nl-chi3 198.110.131.125	High						
Interface 67 at-1/1/0.14 pvc to WMU	·	26	832 K	563.1 K	2.6 K	1.7 K	Details

Anomaly Comments

Commercial Detection: A Large Scale DOS Attack




Accounting

 Flow based accounting can be a good supplement to SNMP based accounting

Cisco Netflow Versions

- Key fields: Source/Destination IP, Source/ Destination Port, IP Protocol, ToS, Input interface.
- Accounting: Packets, Octets, Start/End time, Output interface
- Other: Bitwise OR of TCP flags.
- Does not have sequence numbers no way to detect lost flows
- Obsolete

Netflow v2 to v4

- Cisco internal
- Were never released

- Key fields: Source/Destination IP, Source/ Destination Port, IP Protocol, ToS, Input interface.
- Accounting: Packets, Octets, Start/End time, Output interface.
- Other: Bitwise OR of TCP flags, Source/ Destination AS and IP Mask.
- Packet format adds sequence numbers for detecting lost exports.
- IPv4 only

Netflow v6 & v7

- Used exclusively on the Cisco Catalyst line of ethernet switches
- Requires the Netflow Feature Card, a specialist forwarding engine for the Catalyst Switches
- Not compatible or comparable with Netflow on Cisco routers

- Aggregated v5 flows.
- Not all flow types available on all equipment
- Much less data to post process, but loses fine granularity of v5 – no IP addresses.

- IPv6 support
- 32-bit ASN support
- Additional fields like MPLS labels
- Builds on earlier versions
- Periodically sends "template" packet, all flow data fields reference the template

Questions?

This document is a result of work by the Network Startup Resource Center (NSRC at http://www.nsrc.org). This document may be freely copied, modified, and otherwise re-used on the condition that any re-use acknowledge the NSRC as the original source.

