Remotely Triggered Black Hole Filtering

ISP Workshops

Remotely Triggered Black Hole Filtering

- A simple technique whereby the Network Operator can use their entire backbone to block mischievous traffic to a specific address within their network or their customers' network
- Powerful tool to help with mitigating Distributed Denial of Service Attacks

Remotely Triggered Black Hole Filtering

- Well documented around the Internet, including:
 - Informational RFC from the IETF in 2009:
 - https://tools.ietf.org/html/rfc5635
 - Cisco whitepaper from 2005:
 - http://www.cisco.com/c/dam/en/us/products/ collateral/security/ios-network-foundation-protectionnfp/prod_white_paper0900aecd80313fac.pdf
 - Chris Morrow's presentation at NANOG 30 in 2004 describing the technique:
 - https://www.nanog.org/meetings/nanog30/ presentations/morrow.pdf

Defending against DDoS

- Link bandwidths from ISPs to their customers are usually quite small
- Link bandwidths from ISPs to their upstreams are usually quite large
- DDoS attacks in this day and age are usually multi-Gbps
 - Significant burden for transit providers to handle
 - Completely swamps the end user link

Defending against DDoS

- Packet filters at the customer side are no good
 - The packets have already traversed the link
 - The link is already swamped
- Packet filters at the ISP side could help
 - Requires human intervention
 - Requires serious CPU power on the ISP access router doing the filtering
 - ISP access router effectively the target now
 - Doesn't scale!

Defending against DDoS

- Wouldn't it be better to have all the ISP's routers dealing with the DDoS?
- Manual solution:
 - Customer phones ISP and asks them to null route all traffic to the address under attack
 - Which means the ISP has to change router configurations across the backbone; in the middle of the day / outside maintenance
- Automatic solution:
 - Remotely Triggered Black Hole Filtering (RTBH)

RTBH: Two Options

- Network Operator implements the RTBH function at the customer's request
 - Appropriate for statically connected customers
- 2. Customer triggers the RTBH activity via their BGP session with their ISP
 - Using a specific RTBH BGP Community
 - Appropriate for BGP customers of the ISP

RTBH: Option 1

ISP Deploys RTBH Filtering and Trigger Router within their backbone

RTBH – How it works

- Network Operator deploys:
 - RTBH support across their entire backbone
 - Simply a null route for a specific next-hop address
 - (Router Null interfaces simply discard packets sent to them – negligible overhead in modern hardware)
 - A trigger router (usually in the NOC)
 - Talks iBGP with the rest of the backbone (typically as a client to route-reflectors in the core)
 - Used to trigger a blackhole route activity for any address under attack, as requested by a customer

RTBHv4 – Backbone Configuration

Network Operator sets up a null route for the 192.0.2.1 address on all the backbone routers which participate in BGP

```
ip route 192.0.2.1 255.255.255.255 null 0 254
```

- 192.0.2.1 is part of 192.0.2.0/24, the TEST-NET, one of the reserved IPv4 address blocks
 - http://www.iana.org/assignments/iana-ipv4special-registry
 - It is not used or routed on the public Internet 10

RTBHv6 – Backbone Configuration

Network Operator sets up a null route for the 100::1 address on all the backbone routers which participate in BGP

```
ipv6 route 100::1/128 null 0 254
```

- 100::1 is part of 100::/64, the Discard Prefix, one of the reserved IPv6 address blocks listed in the IANA registry
 - http://www.iana.org/assignments/iana-ipv6special-registry
 - It is not used or routed on the public Internet 11

RTBH – Trigger Router (1)

- Create a route-map to catch routes which need to be blackholed
 - Static routes can be tagged in Cisco IOS we will tag routes to be blackholed with the value of 66
 - Set origin to be iBGP
 - Set local-preference to be 150
 - higher than any other local-preference set in the backbone
 - Set community to be no-export and internal marker community (ASN:666)
 - Don't want prefix to leak outside the AS
 - Set next-hop to 192.0.2.1 (IPv4) or 100::1 (IPv6)

RTBHv4 – Trigger Router (2)

□ The whole route-map:

```
route-map v4blackhole-trigger permit 10
description Look for Route 66
match tag 66
set local-preference 200
set origin igp
set community no-export 100:666
set ip next-hop 192.0.2.1
!
route-map v4blackhole-trigger deny 20
description Nothing else gets through
```

RTBHv6 – Trigger Router (2)

□ The whole route-map:

```
route-map v6blackhole-trigger permit 10
description Look for Route 66
match tag 66
set local-preference 200
set origin igp
set community no-export 100:666
set ipv6 next-hop 100::1
!
route-map v6blackhole-trigger deny 20
description Nothing else gets through
```

RTBHv4 – Trigger Router (3)

- Then introduce the route-map into the BGP configuration
 - NB: the iBGP on the trigger router cannot use "next-hop-self" Cisco IOS over writes the route-map originated next-hop with "next-hop-self"

```
router bgp 100
address-family ipv4
redistribute static route-map v4blackhole-trigger
neighbor 1.2.0.2 remote-as 100
neighbor 1.2.0.2 description iBGP with RR1
neighbor 1.2.0.2 update-source Loopback 0
neighbor 1.2.0.2 send-community
neighbor 1.2.0.3 remote-as 100
neighbor 1.2.0.3 description iBGP with RR2
neighbor 1.2.0.3 update-source Loopback 0
neighbor 1.2.0.3 send-community
```

RTBHv6 – Trigger Router (3)

- Then introduce the route-map into the BGP configuration
 - NB: the iBGP on the trigger router cannot use "next-hop-self" Cisco IOS over writes the route-map originated next-hop with "next-hop-self"

```
router bgp 100
address-family ipv6
redistribute static route-map v6blackhole-trigger
neighbor 2001:dbd::2 remote-as 100
neighbor 2001:dbd::2 description iBGP with RR1
neighbor 2001:dbd::2 update-source Loopback 0
neighbor 2001:dbd::2 send-community
neighbor 2001:dbd::3 remote-as 100
neighbor 2001:dbd::3 description iBGP with RR2
neighbor 2001:dbd::3 update-source Loopback 0
neighbor 2001:dbd::3 send-community
```

RTBHv4 – Trigger Router (4)

- To implement the trigger, simply null route whatever address or address block needs to be blackholed
 - With Tag 66

```
ip route 50.62.124.1 255.255.255.255 null0 tag 66
```

And this ensures that (for example) 50.62.124.1/32 is announced to the entire backbone with next-hop 192.0.2.1 set

RTBHv6 – Trigger Router (4)

- To implement the trigger, simply null route whatever address or address block needs to be blackholed
 - With Tag 66

```
ipv6 route 2001:db8:f::e0/128 null0 tag 66
```

And this ensures that (for example) 2001:db8:f::e0/128 is announced to the entire backbone with next-hop 100::1 set

RTBHv4 – End Result

Prefixes which need to be null routed will come from the trigger router and look like this in the BGP table:

```
*>i 50.62.124.1/32 192.0.2.1 0 150 0 200 i
```

■ Routing entry for 50.62.124.1 is this:

```
cr1>sh ip route 50.62.124.1
Routing entry for 50.62.124.1/32
  Known via "bgp 100", distance 200, metric 0, type int
  Last update from 1.2.0.1 7w0d ago
  Routing Descriptor Blocks:
  * 192.0.2.1, from 1.2.0.1, 7w0d ago
      Route metric is 0, traffic share count is 1
      AS Hops 0
      MPLS label: none
```

RTBHv4 – End Result

■ Routing entry for 192.0.2.1 is this:

```
crl>sh ip route 192.0.2.1
Routing entry for 192.0.2.1/32
  Known via "static", distance 1, metric 0 (connected)
  Routing Descriptor Blocks:
  * directly connected, via Null0
     Route metric is 0, traffic share count is 1
```

■ Traffic to 50.62.124.1 is sent to null interface

RTBHv6 – End Result

Prefixes which need to be null routed will come from the trigger router and look like this in the BGP table:

■ Routing entry for 2001:db8:f::e0 is this:

```
cr1>sh ipv6 route 2001:db8:f::e0
Routing entry for 2001:DB8:F::E0/128
  Known via "bgp 100", distance 200, metric 0, type
internal
  Route count is 1/1, share count 0
  Routing paths:
    100::1
    MPLS label: nolabel
    Last updated 00:00:03 ago
```

RTBHv6 – End Result

■ Routing entry for 100::1 is this:

```
cr1>sh ipv6 route 100::1
Routing entry for 100::1/128
  Known via "static", distance 1, metric 0
  Route count is 1/1, share count 0
  Routing paths:
    directly connected via Null0
    Last updated 00:05:21 ago
```

Traffic to 2001:db8:f::e0 is sent to null interface

RTBH: Option 2

ISP Deploys RTBH Filtering across their backbone, and supplies BGP community for their customer

RTBH – How it works

- Customer announces the address being attacked by BGP to their upstream provider
 - Prefix is tagged with a special community
- Upstream provider sees the special community from their customer
 - This flags their BGP speaking routers to set the next-hop to the Null interface
 - All traffic to the customer address is discarded

RTBH – Customer Configuration (1)

- Create a route-map to tag routes which need to be blackholed by upstream
 - Routes tagged with 66 will be blackholed
 - Set origin to be iBGP
 - Set community to upstream's RTBF community

```
route-map blackhole-trigger permit 10
description Look for Route 66
match tag 66
set origin igp
set community 100:666
!
route-map blackhole-trigger deny 20
```

RTBHv4 – Customer Configuration (2)

- Then introduce the route-map into the BGP configuration
 - We will tag static routes with "66" to indicate they are blackhole routes
- And use it on the eBGP with the upstream:

```
router bgp 200
address-family ipv4
redistribute static route-map blackhole-trigger
neighbor 1.1.1.1 remote-as 100
neighbor 1.1.1.1 description Transit ISP
neighbor 1.1.1.1 prefix-list upstream-in in
neighbor 1.1.1.1 prefix-list my-prefixes out
neighbor 1.1.1.1 send-community
!
```

RTBHv6 – Customer Configuration (2)

- Then introduce the route-map into the BGP configuration
 - We will tag static routes with "66" to indicate they are blackhole routes
- And use it on the eBGP with the upstream:

```
router bgp 200
address-family ipv6
redistribute static route-map blackhole-trigger
neighbor 2001:db8:1::1 remote-as 100
neighbor 2001:db8:1::1 description Transit ISP
neighbor 2001:db8:1::1 prefix-list upstreamv6-in in
neighbor 2001:db8:1::1 prefix-list my-v6prefixes out
neighbor 2001:db8:1::1 send-community
!
```

RTBHv4 – Customer Configuration (3)

- To implement the trigger, simply null route whatever address or address block needs to be blackholed
 - With Tag 66

```
ip route 50.62.124.1 255.255.255.255 null0 tag 66
```

And this ensures that (for example) 50.62.124.1/32 is announced to the upstream provider with community 100:666 set

RTBHv6 – Customer Configuration (3)

- To implement the trigger, simply null route whatever address or address block needs to be blackholed
 - With Tag 66

```
ipv6 route 2001:db8:f::e0/128 null0 tag 66
```

And this ensures that (for example) 2001:db8:f::e0/128 is announced to the upstream provider with community 100:666 set

RTBHv4 – Upstream Configuration (1)

- Upstream provider sets up route-map to look for trigger community from their BGP customers
 - Need to set next hop for non-blackhole routes to be loopback of local router

```
ip community-list expanded RTBH permit 100:666
!
route-map ibgp-policy permit 10
  description Look for Blackhole Routes
  match community RTBH
  set local-preference 150
  set ip next-hop 192.0.2.1
  set community no-export
!
route-map ibgp-policy permit 20
  description Let everything else through
  set ip next-hop 1.2.0.1
!
```

RTBHv6 – Upstream Configuration (1)

- Upstream provider sets up route-map to look for trigger community from their BGP customers
 - Need to set next hop for non-blackhole routes to be loopback of local router

```
ip community-list expanded RTBH permit 100:666
!
route-map ibgpv6-policy permit 10
  description Look for Blackhole Routes
  match community RTBH
  set local-preference 150
  set ipv6 next-hop 100::1
  set community no-export
!
route-map ibgpv6-policy permit 20
  description Let everything else through
  set ipv6 next-hop 2001:db8::1
!
```

RTBHv4 – Upstream Configuration (2)

- The route-map is now applied to the iBGP neighbours of this edge router
 - Note the absence of "next-hop-self" this is now done in the route-map

```
router bgp 100
address-family ipv4
neighbor 1.2.0.2 remote-as 100
neighbor 1.2.0.2 description iBGP with RR1
neighbor 1.2.0.2 update-source Loopback 0
neighbor 1.2.0.2 send-community
neighbor 1.2.0.2 route-map ibgp-policy out
neighbor 1.2.0.3 remote-as 100
neighbor 1.2.0.3 description iBGP with RR2
neighbor 1.2.0.3 update-source Loopback 0
neighbor 1.2.0.3 send-community
neighbor 1.2.0.3 route-map ibgp-policy out
!
```

RTBHv6 – Upstream Configuration (2)

- The route-map is now applied to the iBGP neighbours of this edge router
 - Note the absence of "next-hop-self" this is now done in the route-map

```
router bgp 100
address-family ipv6
neighbor 2001:db8::2 remote-as 100
neighbor 2001:db8::2 description iBGP with RR1
neighbor 2001:db8::2 update-source Loopback 0
neighbor 2001:db8::2 send-community
neighbor 2001:db8::2 route-map ibgpv6-policy out
neighbor 2001:db8::3 remote-as 100
neighbor 2001:db8::3 description iBGP with RR2
neighbor 2001:db8::3 update-source Loopback 0
neighbor 2001:db8::3 send-community
neighbor 2001:db8::3 route-map ibgpv6-policy out
```

RTBHv4 – Upstream Configuration (3)

Upstream provider then sets up a null route for the 192.0.2.1 address on all the backbone routers which participate in BGP

ip route 192.0.2.1 255.255.255.255 null 0 254

- **Note**: It is NOT possible in Cisco IOS to change the next-hop of the blackhole route as it arrives on the IPv4 eBGP session
 - Which is why the policy to change the next-hop to 192.0.2.1 is applied on the iBGP sessions

RTBHv6 – Upstream Configuration (3)

Upstream provider then sets up a null route for the 100::1 address on all the backbone routers which participate in BGP

ip route 100::1/128 null 0 254

- **Note**: It is NOT possible in Cisco IOS to change the next-hop of the blackhole route as it arrives on the IPv6 eBGP session
 - Which is why the policy to change the next-hop to 100::1 is applied on the iBGP sessions

RTBH – End Result

Prefixes which need to be null routed coming from the customer will look like this in the BGP table:

```
*>i 50.62.124.1/32 192.0.2.1 0 150 0 200 i
```

■ Routing entry for 50.62.124.1 is this:

```
cr1>sh ip route 50.62.124.1
Routing entry for 50.62.124.1/32
  Known via "bgp 100", distance 200, metric 0, type int
  Last update from 1.2.0.4 7w0d ago
  Routing Descriptor Blocks:
  * 192.0.2.1, from 1.2.0.4, 7w0d ago
      Route metric is 0, traffic share count is 1
      AS Hops 0
      MPLS label: none
```

RTBH – End Result

■ Routing entry for 192.0.2.1 is this:

```
crl>sh ip route 192.0.2.1
Routing entry for 192.0.2.1/32
  Known via "static", distance 1, metric 0 (connected)
  Routing Descriptor Blocks:
  * directly connected, via Null0
     Route metric is 0, traffic share count is 1
```

■ Traffic to 50.62.124.1 is sent to null interface

RTBH – Conclusion

- Very effective method of dealing with DDoS attacks
 - Enlisting the support of upstream ISP
 - Lightweight on resources
 - Null interface is a discard interface, takes negligible CPU on line card, negligible CPU on control plane
 - Uses a BGP Community for signalling between customer and transit provider
- Recommendation 1: Only take Internet transit from an operator who supports RTBH filtering
- Recommendation 2: Provide the RTBH filtering feature to all your customers

Remotely Triggered Black Hole Filtering

ISP Workshops