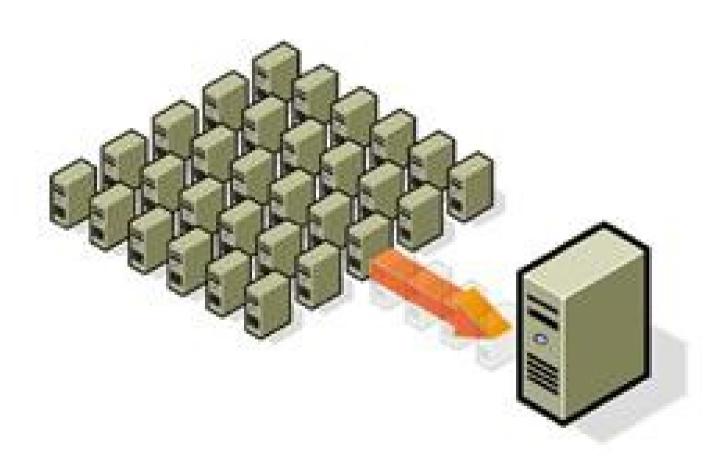
Securing your Virtual Datacenter

Part 1: Preventing, Mitigating Privilege Escalation


Network Startup Resource Center

UNIVERSITY OF OREGON

Before We Start...

- Today's discussion is by no means an exhaustive discussion of the security implications of virtualization
- Recommendations for securing infrastructure may or may not fit in your environment
- If you have any questions there may be time after the talk, otherwise, please feel free to approach me after

Virtualization?

Why?

Consolidation

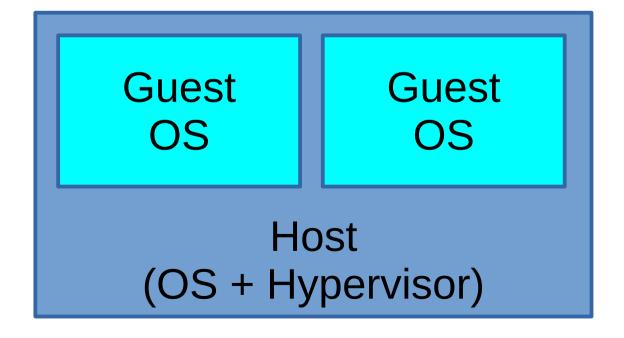
- Most systems are under-utilized, especially the CPU is idle for much of the time
- Do more work with less hardware
- Reduced space and power requirements

Management

- Snapshot/restore, cloning, migration
- Increased isolation between services

Servers...

Servers.

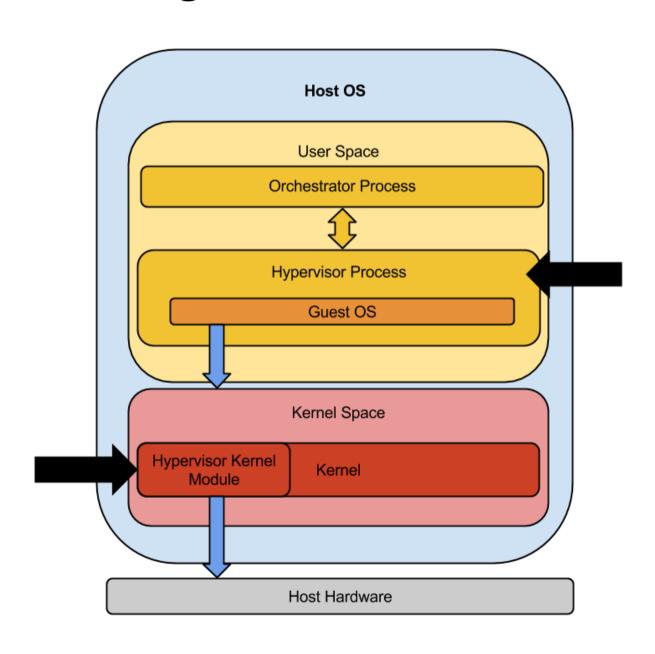


Where does the lock go?

```
top - 23:51:16 up 50 days,
                         6:29
                                         `ad average: 0.93, 0.97, 1.02
Tasks: 113 total, 1 running, sleeping,
                                            stopped, 0 zombie
                 0.0 sy, ' ni, 74.9 id, \ wa, 0.0 hi, 0.0 si, 0.0 st
%Cpu(s): 25.1 us,
KiB Mem: 8090808 total, 7 4048 used, 472676 ree, 1258176 buffers
KiB Swap: 3903484 total,
                              0 used, 390348 ree, 1235216 cached
  PID USER
                     VIR
                           RES SHR S %CPU %
              PR NI
                                                  TIME+
                                                        COMMAND
32576 kvm-121
              20
                           50m 3248 S 101.5
                                               392:24.26 kvm
                     991
```

Terminology

- The <u>host</u> is the physical machine running the virtual machine
- The guest is the emulated (virtual) machine
- One host could be running many guests


Hypervisor

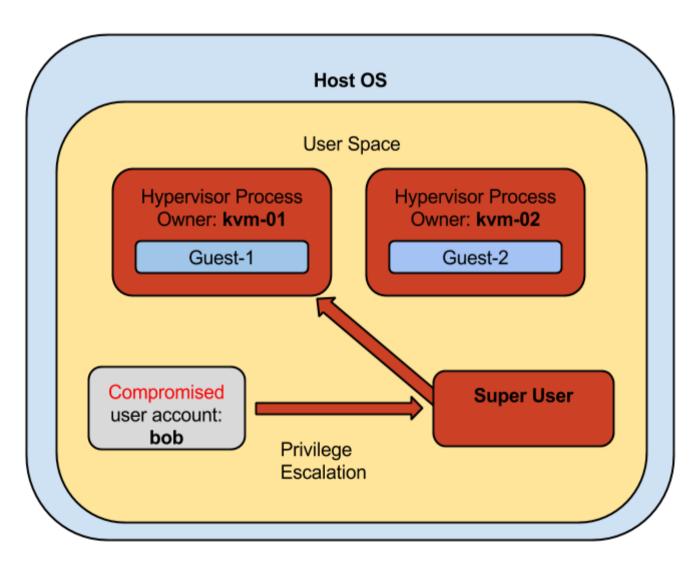
- Hypervisor emulates hardware for guest
- Hypervisor allocates some real system RAM to each VM, and shares the CPU time

Orchestrator

- APIs for administering guest operations
 - Start / Stop
 - Creation / Destruction
 - Failover / Migration
- Examples
 - Libvirt
 - Ganeti

Visualizing the Virtualization Stack

Threat Model: What is possible?


Privilege Escalation

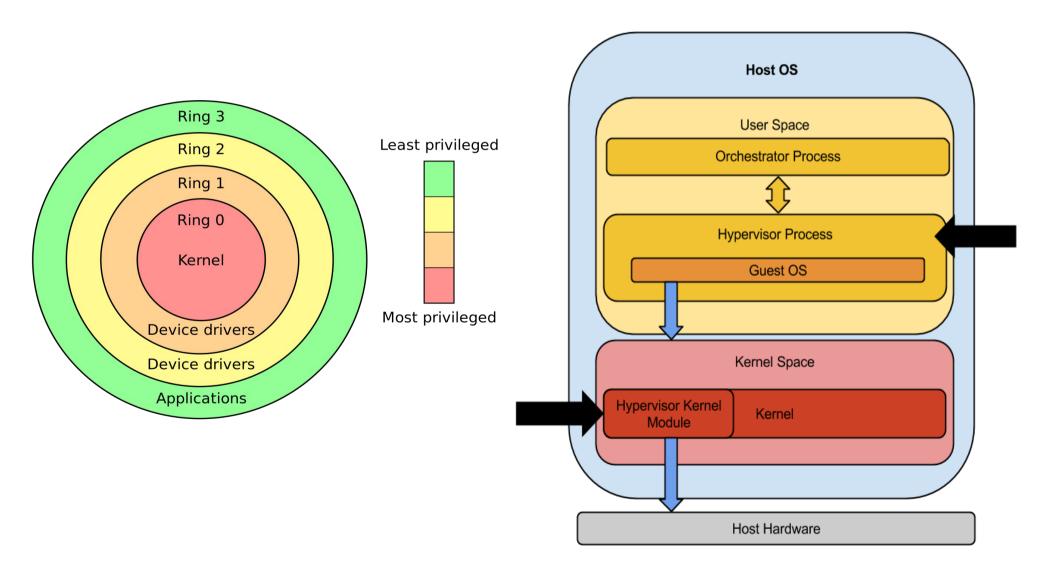
 Exploit that allows unprivileged subject access to guests through hypervisor, orchestrator services

Denial of Service

Attacker denies other users access to shared resources

Example: Escalate User Privileges, Access Guests

Example: Guest Access Orchestrator API

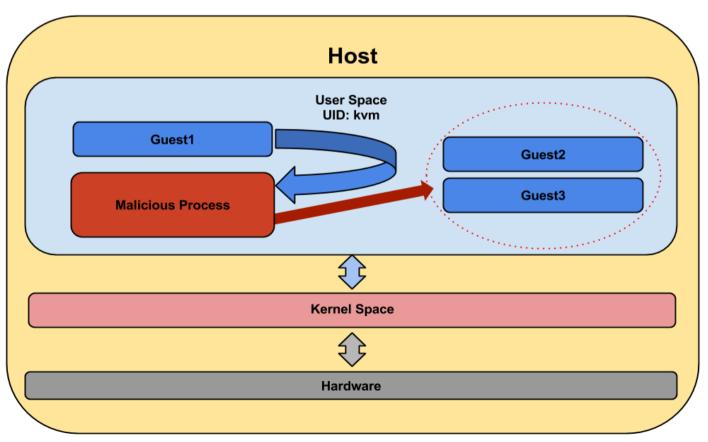

VM Escape

Breaking out of Guest and interacting with and/or executing code on the host.

- Spawn a shell
- Open a network backdoor

- ...

Guests vs. Hypervisor

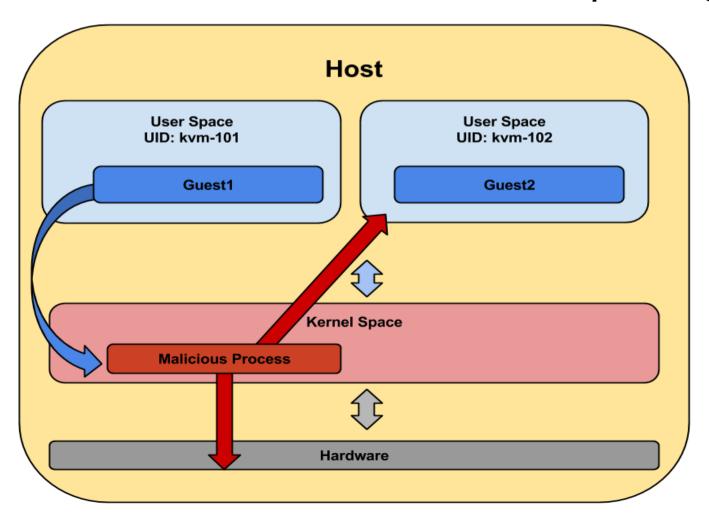


CVE-2015-3456, "Venom"

- Flaw in emulator's implementation of Floppy controller
- Doesn't require the presence of a floppy drive on the system, just access to send I/O to controller
- Allows Guest user to execute arbitrary code in "user" space on Host

Escape to User Space

 Attacker can execute code and access resources as the owner of the hypervisor process

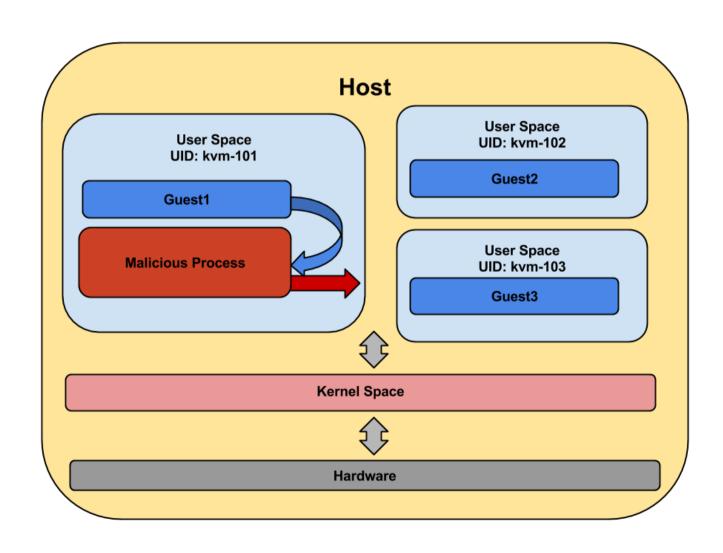


CVE-2012-0217 kernel: x86_64

- Affects Xen Hypervisor
- When a guest is run paravirtualized, it runs a modified kernel that passes some instructions directly to host kernel
- Flaw in system call in host kernel that allows guest to execute arbitrary code in kernel space on host

Escape to Kernel Space

 Attacker can execute code and access resources as the owner with Kernel privileges



Privilege Escalation Mitigation

Segregate Guest Execution Space

- Execute VM's as non-privileged, service users
 - No home directories
 - No password
 - No Shell
- Allocate one user account per guest
 - In the case of VM Escape, every guest is isolated

Segregate VM Execution Space

Discretionary Access Control (DAC)

- Linux's "stock" access control policy is referred to "discretionary access control"
- "Restricts access to objects based on the identity of subjects and/or groups to which they belong."
- Allows privilege sets to be inherited from parent process

Strong DAC with Libvirt

 Can set a per-host default setting in the /etc/libvirt/qemu.conf configuration file via the user=\$USERNAME and group=\$GROUPNAME parameters. When a non-root user or group is configured, the libvirt QEMU driver will change uid/gid to match immediately before executing the QEMU binary for a virtual machine.

POSIX Capbilities, Libvirt

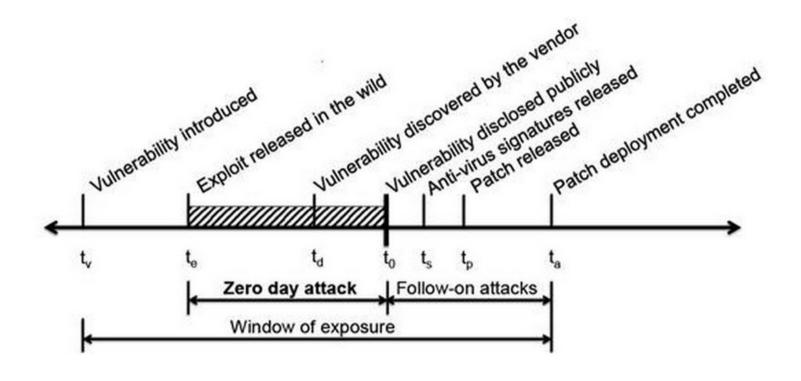
- The libvirt QEMU driver has a build time option allowing it to use the libcap-ng library to manage process capabilities. If this build option is enabled, then the QEMU driver will use this to ensure that all process capabilities are dropped before executing a QEMU virtual machine.
- The Linux capability feature is thus aimed primarily at the scenario where the QEMU processes are running as root.

Mandatory Access Control (MAC)

- Modifications to Linux Kernel that apply mandatory, system level access control above and beyond discretionary policy
- Requires strict definition of allowed access
- Integration in common virtualization orchestrator library Libvirt

SELinux/AppArmor + Libvirt

- By default, SELinux + libvirt provides protection between host and guest
- No protection between guests


SELinux/AppArmor + Libvirt + sVirt

- Each QEMU virtual machine runs under its own confined domain
- Prevents one QEMU process accessing any file resources that are prevent to another QEMU process

Patch your systems!

 Hypervisor vulnerabilities are mitigated by patches to the hypervisor software

Mind the Vulnerability Timeline

http://blog.coresecurity.com/2013/02/27/a-world-of-vulnerabilities-guest-blog-post-from-infosec-institute/

Audit System Logs

- Audit privilege escalation
 - Sudoers
 - Root logins
- Audit orchestrator events
 - Start / Stop / Restart Guest
 - Attach / detach storage
 - Changes to network interfaces

Segregate Services

- Apply the principle of least privilege:
 - Which users need access to the host? Guests?
 - What network communication is strictly necessary?
 - What communication channels could jeopardize hypervisor?
 - What communication channels could jeopardize data?

Harden Network Services

- Enable authentication and encryption for remote access protocols
 - VNC
 - Orchestrator APIs
- Isolate Guest network from Host network
- Scope the listening interfaces for network services where possible

DoS Mitigation

Controlling Resource Consumption

- Know your service's resource needs
- Intelligently allocate resources and create policy for limiting the potential for resource exhaustion
 - Distribute resource intensive operations across physical hardware
 - Be careful not to over-subscribe resources
- Leverage tools like virtio that assist your virtual machines in allocating resources intelligently

Controlling Resource Consumption

- Depending on your platform, you have a number of options for controlling resource utilization
 - Relative controls Control the priority of resource allocation in relation to other virtual machines.
 - Absolute controls Control the absolute amount of a resources allocation

cgroups for Resource Management

- Used to allocate and segregate resources among containers and VM by libvirt, lxc, etc.
- Options including:
 - cpuset assigns individual CPUs and memory nodes to cgroup
 - cpu schedules CPU access to cgroups
 - memory generates automatic reports on memory resources used by the tasks in a cgroup, and sets limits on memory use of those tasks
 - blkio controls and monitors access to I/O on block devices by tasks in cgroups
 - devices allows or denies access to devices by tasks in a cgroup

Summary

- Virtualization has many benefits but there can be many security risks if managed improperly
- Most vulnerabilities arise as a result of sharing hardware
- Patching accompanied by strong access control around the hypervisor and orchestrator can limit the damage caused by privilege escalation and DoS
- Auditing and monitoring orchestrator and OS logs will help you know when and if you are being attacked and perhaps even if the attack was successful