
Issue Date:

Revision:

Cryptography
Application : SSH
SANOG 27

25th January 2016 – 1st February 2016

Kathmandu, Nepal

[31-12-2015]

[v.1]

What is “Safely”

•  Authentication – I am Assured of Which Host I am Talking

With

•  Authentication - The Host Knows Who I Am

•  The Traffic is Encrypted

Traditional (Telnet)

Servers

Routers

Terminal

clear text

clear text

Encrypted (SSH)

Servers

Routers

Terminal

encrypted text

encrypted text

Secure Shell (SSH)

•  Provides authenticated and encrypted shell access to a
remote host

•  It’s not only a secure shell; it is much more
–  Transport protocol (eg. SCP, SFTP, SVN)
–  Connection forwarder. You can use it to build custom tunnels

SSH (Ordinary Password
Authentication)
1. The user makes an initial TCP connection and sends a
username.

ServerTerminal ý

ssh sshd
username

SSH (Ordinary Password
Authentication)
2. The ssh daemon on the server responds with a demand for
a password, and access to the system has not yet been
granted in any way.

ý ServerTerminal

ssh sshd
password?

SSH (Ordinary Password
Authentication)
3. The ssh client prompts the user for a password, which is
relayed through the encrypted connection to the server where
it is compared against the local user base.

ý ServerTerminal

ssh sshd
password

SSH (Ordinary Password
Authentication)
4. If the user's password matches the local credential, access
to the system is granted and a two-way communications path
is established, usually to a login shell.

þ ServerTerminal

ssh sshd
access granted

Password Authentication

•  Password Authentication is that it's simple to set up -
usually the default - and is easy to understand.

•  Allows brute-force password guessing.

•  Passwords must be remembered and entered separately
upon every login.

Public Key Access

•  User creates a pair of public and private keys.

•  The public key - nonsensitive information.

•  The private key - is protected on the local machine by a
strong passphrase.

•  Installs the public key in his $HOME/.ssh/
authorized_keys file on the target server.

•  This key must be installed on the target system - one time.

Public Key Access

1. The user makes an initial connection and sends a username along with
a request to use a key.

2. The ssh daemon on the server looks in the user's authorized_keys file,
constructs a challenge based on the public key found there, and sends
this challenge back to the user's ssh client.

3. The ssh client receives the key challenge. It finds the user's private key
on the local system, but it's protected by an encrypting passphrase.

4. The user is prompted for the passphrase to unlock the private key.
5. ssh uses the private key to construct a key response, and sends it to
the waiting sshd on the other end of the connection. It does not send the
private key itself!
6. sshd validates the key response, and if valid, grants access to the
system.

12

How key challenge work (Under the hood)

1. User ssh to server, he presents his
username to the server with a
request to set up a key session.

2. The server creates a "challenge". It
creates and remembers a large
random number, then encrypts it with
the user's public key.

random number
user’s public

key

encrypt

key challenge

Key Challenge Creation

How key challenge work (Under the hood)

3. Agent decrypts it with the private key and get
the random number generated by the server.

4. The agent takes this random number, appends
the previously negotiated SSH session ID and
creates an MD5 hash value of the resultant string:
this result is sent back to the server as the key
response.

key
challenge

user’s
private key

decrypt

key response

Key Response
Generation

Challenge
(clear text)

sessio
n ID

MD5 hash

How key challenge work (Under the hood)

5. The server computes the same MD5 hash
(random number + session ID) and compares it
with the key response from the agent.

6. If they match, the user must have been in
possession of the private key, and access is
granted.

key challenge

key response

Public Key Access

•  Public keys cannot be easily brute-forced.

•  The same private key (with passphrase) can be used to
access multiple systems: no need to remember many
passwords.

•  Requires one-time setup of public key on target system.

•  Requires unlocking private key with secret passphrase
upon each connection.

Public Key Access

•  Never store Private Key on a multi-user host.

•  Store Private Key ONLY on your laptop and protect your
laptop (Encrypt Disk!).

•  It is OK to use SSH_AGENT to remember your key ONLY if
your laptop/computer locks very quickly.

Private Key on Unix / MacOSX

•  SSH is Built In
–  UNIX
–  Linux
–  MacOS X

Generate Key (Unix / MacOSX)
$/usr/home/foo> ssh-keygen -t rsa -b 4096 -C your_email@example.com

Generating public/private rsa key pair.

Enter file in which to save the key (/usr/home/foo/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /usr/home/foo/.ssh/id_rsa.

Your public key has been saved in /usr/home/foo/.ssh/id_rsa.pub.

The key fingerprint is:

27:99:35:e4:ab:9b:d8:50:6a:8b:27:08:2f:44:d4:20 foo@bdnog.org

Generate Key (Unix / MacOSX)

~/.ssh/id_rsa: The private key. DO NOT SHARE THIS FILE!

~/.ssh/id_rsa.pub: The associated public key. This can be
shared freely without consequence.

Password vs Passphrase

source : http://xkcd.com/936/

Private Key on Windows

•  http://www.chiark.greenend.org.uk/~sgtatham/putty/
download.html
–  PuTTY (the Telnet and SSH client itself)
–  PuTTYgen (an RSA and DSA key generation utility).
–  Pageant (an SSH authentication agent for PuTTY, PSCP, PSFTP,

and Plink)

Generate Key (Windows)

1. Run PuttyGen

Generate Key (Windows)

2. Generate Key

Generate Key (Windows)

3. Enter Passphrase & Save
Private Key  

4. Right-click in the text field
labeled Public key for pasting
into OpenSSH
authorized_keys file and
choose Select All and copy
the key

Putting the Key on the Target Host

•  You can copy the public key into the new machine's
authorized_keys file with the ssh-copy-id command
ssh-copy-id user@serverip

•  Alternatively, you can paste in the keys using SSH:
cat ~/.ssh/id_rsa.pub | ssh user@serverip "mkdir -p
~/.ssh && cat >> ~/.ssh/authorized_keys”

Generate Key (Windows)

4. Load Key in Putty

Generate Key (Windows)

5. SSH to host

username@ipaddress

Generate Key (Windows)

6. Accept Host’s Key

Generate Key (Windows)

7. passphrase for Key

PuTTY Agent: Pageant

•  Select Add Key, browse to your key, select, enter
passphrase

•  Enter passphrase again. Eventually you'll get it right.

•  SSH to your server

•  PuTTY enable/disable agent: Connection -> SSH ->
Auth, "Attempt Authentication using Pageant"
checkbox

Exercise

•  Create your key

•  Follow the lab manual ssh-lab.pdf

