Bandwidth Management

Chris Wilson Aptivate Ltd, UK AfNOG 2010

Ingredients

- > What is bandwidth management
- When to manage bandwidth
- Troubleshooting an Internet connection
- Monitoring an Internet connection
- Setting policy
- Enforcing Policy
 - Social measures
 - Technical measures
- Summary and resources

Specific Questions

- Divide bandwidth between different networks on CentOS
- Reserving bandwidth for specific services
- Strategic Plan for Buying Bandwidth based on value and need

What is Bandwidth Management?

- Network management of slow links, and the networks that use them?
 - Do you have a better definition?
- Particularly important to internet users
- Users often complain that "the internet is slow" or "the internet is down"
- You may need more bandwidth, but:
 - Usage always grows until resource is not worth using
 - Bandwidth is very expensive
 - Good management can save you a lot of money

Meeting Expectations

- Users have an expectation of network performance
 - Set by previous experience, e.g. cyber cafés, friends, other employers, connection at home
- Users will ask for more bandwidth than you can supply (if it doesn't cost them more money)
- Business and academia don't provide "neutral pipes"
 - Subsidised service for specific objectives, e.g. research
- Maximise utility for the intended purposes
 - Reduce, eliminate or move all other traffic
 - Make the most capacity available

Bandwidth Mis-management

- If an internet connection is not well managed:
 - PCs will become infected with viruses and worms
 - Virus and worm traffic will fill the connection
 - P2P users and download managers will fight for the rest
 - Ordinary web browsing will become impossible
 - Skype, VoIP and other interactive applications will be unusable
- Departments may demand a separate connection
 - Wastes resources that could be better pooled
 - Appears to work for a while, then suffers the same fate

Next

- What is bandwidth management
- > When to manage bandwidth
- Troubleshooting an Internet connection
- Monitoring an Internet connection
- Setting policy
- Enforcing Policy
 - Social measures
 - Technical measures
- Summary and resources

When to Manage Bandwidth

- Do we need bandwidth management?
 - Users complaining (and bandwidth is definitely the issue)
 - Billed by usage
 - Throttled by usage
 - Complaints from upstream provider
 - Improve quality of service
 - Downgrade connection to save money
- Not sure? Monitor!
 - Management will not help unless link is overloaded
 - Monitoring gives early warning of problems

Next

- What is bandwidth management
- When to manage bandwidth
- > Troubleshooting an Internet connection
- Monitoring an Internet connection
- Setting policy
- Enforcing Policy
 - Social measures
 - Technical measures
- Summary and resources

The Internet is so slow!

- What do we mean by "slow"?
 - completely down?
 - packet loss (tcp backoff)
 - long ping times (round-trip times)
 - long DNS lookup times (or DNS failure)
 - jitter (mostly affects Skype and other VoIP)
- What doesn't work?
 - Access to ordinary web pages? (HTTP, DNS)
 - BitTorrent and P2P software?
 - Skype and other real-time network applications?

In Case of Repeated Fires

- Sometimes (not always!) the problem will be that your connection is too often full (used to capacity)
- You can ping the router on your side without problems, but pinging your ISP's router shows:
 - very high latency (over 1 second) to your ISP
 - Windows reports latency over 4 seconds as "request timed out"
 - packet loss over 1% to your ISP
 - DNS timeouts or slow replies from your ISP (not cached)
 - high jitter (subjective, maybe over 20 ms stdev?)
- Could also be a faulty link or router on either end

Definitions

Diagnosing the Problem

- Check that your connection works
- Check that your DNS works
- Traceroute to the remote server, looking for:
 - sudden increase in ping times or packet loss
 - jitter (standard deviation changes)
 - identify between which hops this occurs
- Ping the remote server
- telnet www.youtube.com 80
 - GET / HTTP/1.0
 Host: www.youtube.com
- Monitor intermittent problems with trending tools atmos

Ping

- Useful for spot checking:
 - reachability (try www.google.com, 4.2.2.2)
 - round trip time (RTT), also known as latency
 - packet loss (ping -f, ping -c 1000 -s 1400 may help)
 - jitter (ping -c 1000 and check *mdev/stddev*)
 - fragmentation (ping -s 1483)

Matt's Traceroute (MTR)

- Interactive, repeating version of Traceroute
 - sudo pkg_add -r mtr
 - mtr -t download.java.sun.com

```
HOST: rocio.int.aidworld.org Loss% Snt Last Avg Best Wrst StDev
 1. 196.200.217.254
                          0.0% 10 1.6 1.7 1.6 1.8 0.1
                           0.0% 10 2.0 2.2 2.0 3.2 0.4
 2. rtr-tedata.mtg.afnog.org
 3. host-196.219.220.81-static.t 0.0% 10 5.5 8.4 4.0 45.0 12.9
 4. host-163.121.160.229.tedata. 0.0% 10 6.7 4.8 4.3 6.7 0.8
 5. host-163.121.189.73.tedata.n 0.0% 10 4.4 11.3 4.4 63.4 18.4
 6. host-163.121.186.253.tedata. 0.0% 10 4.5 5.1 4.5 7.4 0.9
 7. host-163.121.184.61.tedata.n 0.0% 10 5.0 5.7 4.6 13.5 2.8
 8. pal6-telecom-egypt-1-eg.pal. 0.0% 10 72.3 66.4 54.5 100.7 15.4
 9. ash1-new11-racc1.ash.seabone 0.0% 10 150.3 154.2 150.3 175.9 7.8
                                      10 153.7 152.7 146.7 154.5 3.0
10. ntt-1-ash1.ash.seabone.net 40.0%
11. as-3.r20.snjsca04.us.bb.gin. 0.0%
                                     10 153.7 182.7 146.1 219.0 36.8
12. as-3.r20.snjsca04.us.bb.gin. 10.0% 10 215.9 255.3 214.3 370.0 54.4
13. ge-3-3.r03.snjsca04.us.ce.gi 10.0% 10 216.9 253.5 216.2 402.0 63.7
14. border2.te8-1-bbnet2.sfo002. 10.0% 10 216.9 218.7 215.8 230.7 5.0
15. border2.te8-1-bbnet2.sfo002. 50.0%
                                      10 215.2 215.6 214.9 216.9 0.8
16. ???
                      100.0 10 0.0 0.0 0.0 0.0 0.0
```


Who Controls the Broken Link

- Every link is between two hops
- May be able to identify them from reverse DNS, or looking at your network map
- Both ends are responsible for the link
- Usually cannot tell which end has the problem except by swapping it out
- Who controls the nearest end?
 - You? (investigate the traffic on the link)
 - Your ISP? (call your ISP)
 - Their carrier? (call your ISP, or pray)

Next

- What is bandwidth management
- When to manage bandwidth
- Troubleshooting an Internet connection
- > Monitoring an Internet connection
- Setting policy
- Enforcing Policy: Social measures
- Enforcing Policy: Technical measures
- Summary and resources

Monitoring an Internet connection

- What do we want to monitor?
 - The same factors that we want to use for troubleshooting
 - The same factors that affect quality of service
 - Local and remote router availability and ping times (packet loss and latency)
 - Local and remote caching DNS server availability and query response times (failure rate and latency)
 - Link traffic overall, and by host and type
 - Remote websites (end-to-end test)
- Long-term monitoring helps to identify trends and sudden large changes

What Kind of Monitoring

- Spot check tools can identify some problems immediately
- Many problems require an idea of baseline performance (what changed? and how much?)
- Trending tools can gather baseline data
- Trending tools can help investigate problems after they disappear (e.g. intermittent, recurring)
- Trending tools require significant CPU, disk space, bandwidth and infrastructure investment

Tools of the Trade

Variable	Spot Check	Trending
End-to-end HTTP	wget, fetch, httperf	Smokeping, Nagios
Ping latency	Ping, Traceroute, MTR	Smokeping, Nagios
Ping packet loss	Ping, Traceroute, MTR	Smokeping, Nagios
DNS latency	Host, Resperf	Smokeping, Nagios
DNS errors	Host, Resperf	Smokeping, Nagios
Total bandwidth use	Cisco "show interfaces"	Cacti, MRTG
Traffic flows	Cisco Top Talkers, Ntop	NfSen, Argus, pmGraph
Individual packets	Wireshark	tcpdump, Argus

Quality of Service Monitoring

- Nagios to monitor websites, routers and DNS servers (local and upstream) and send alerts
- Cacti to monitor total bandwidth use on each interface, CPU and memory use on routers and switches
- Smokeping to monitor websites, latency and packet loss on upstream connections
- pmGraph to monitor traffic flows on Internet connections

Conventions

- File names and technical terms are in *italics*
- Commands to type are shown in monospaced bold italic purple type:
 - cat /etc/monospaced/bold/italic/purple
- Long command lines are wrapped, but with a single bullet point at the start:
 - cat /usr/local/etc/foo/bar | less | more | grep | sed | awk
 > /usr/local/tmp/foo/bar
- Text that is output by a program, or should already be in a file, is shown in plain monospaced type:
 - sshd_enable="YES"

Installing Apache

- Install Apache binary package:
 - sudo pkg_add -r apache22
 - You can ignore the message "pkg_add: apache-2.2.x is already installed"
- Edit /etc/rc.conf and add the following line (if not already present):
 - apache22_enable=YES
- Start Apache now:
 - /usr/local/etc/rc.d/apache22 start
- Test that Apache is running

Installing Nagios (1)

- Install the Nagios binary package:
 - sudo pkg_add -r nagios
- Edit /etc/rc.conf and add the following line:
 - nagios_enable="YES"
- Copy the sample files in /usr/local/etc/nagios to their real names:
 - cd /usr/local/etc/nagios
 - sudo cp nagios.cfg-sample nagios.cfg
 - sudo cp cgi.cfg-sample cgi.cfg
 - sudo cp resource.cfg-sample resource.cfg

Installing Nagios (2)

- Edit *nagios.cfg* and comment out this line:
 - cfg_file=/usr/local/etc/nagios/objects/localhost.cfg
- Copy the sample files in /usr/local/etc/nagios/ objects:
 - sudo cp commands.cfg-sample commands.cfg
 - sudo cp contacts.cfg-sample contacts.cfg
 - sudo cp timeperiods.cfg-sample timeperiods.cfg
 - sudo cp templates.cfg-sample templates.cfg
- Edit /usr/local/etc/nagios/objects/contacts.cfg:
 - Change nagios@localhost to your email address

Configuring Apache for Nagios (1)

- Create /usr/local/etc/apache22/Includes/nagios.conf with the following contents:
 - <Directory /usr/local/www/nagios>

Order deny, allow

Allow from all

AuthName "Nagios Access"

AuthType Basic

AuthUserFile /usr/local/etc/nagios/htpasswd.users

Require valid-user

</Directory>

<Directory /usr/local/www/nagios/cgi-bin>

Options ExecCGI

</Directory>

ScriptAlias /nagios/cgi-bin/ /usr/local/www/nagios/cgi-bin/

Alias /nagios/ /usr/local/www/nagios/

Configuring Apache for Nagios (2)

- Create the password file and a user account for Nagios:
 - sudo htpasswd -c /usr/local/etc/nagios/htpasswd.users nagiosadmin
 - At the "New Password:" prompt, enter the password you want for the nagiosadmin user
- Tell Apache to reload its configuration:
 - sudo /usr/local/etc/rc.d/apache22 reload
- Test it by browsing to http://localhost/nagios/:
 - Log in as user nagiosadmin with the password you entered into *htpasswd*
 - You should see the Nagios logo and "Version 3.0.6"

Monitoring Routers with Nagios (1)

• Edit /usr/local/etc/nagios/objects/templates.cfg and add these lines at the end:

```
    define host {
        host_name router-serena use generic-host address 196.200.215.254 max_check_attempts 5
    }
    define host {
        host_name router-kist use generic-host address 196.200.217.254 max_check_attempts 5
    }
```

• (continued...)

Monitoring Routers with Nagios

• Edit /usr/local/etc/nagios/objects/templates.cfg and add these lines at the end:

```
define hostgroup {
    hostgroup_name routers
    members router-serena, router-kist
}

define service {
    service_description ping
    use generic-service
    hostgroup routers
    check_command check_ping!10,20%!20,40%
}
```


Monitoring DNS Servers with Nagios

```
define hostgroup {
  hostgroup_name dns-servers
define host {
  name dns-server
  max check attempts 5
  hostgroups dns-servers
  register 0
define host {
  host_name soekris
  use dns-server
  address 196.200.223.1
define host {
  host_name upstream-dns-server
  use dns-server
  address 196.200.223.2
define command {
  command name check dns
  command_line $USER1$/check_dns -H www.yahoo.com -s $HOSTADDRESS$
define service {
  service description dns
  use generic-service
  hostgroup dns-servers
  check command check dns
```


Monitoring web sites with Nagios

```
define hostgroup {
  hostgroup_name websites
define host {
  name website
  max check attempts 5
  hostgroups websites
  register 0
define host {
  host_name www.yahoo.com
  use website
  address www.yahoo.com
define host {
  host_name www.google.com
  use website
  address www.google.com
define command {
  command name check site
  command_line $USER1$/check_http -H $HOSTADDRESS$
define service {
  service description http
  use generic-service
  hostgroup websites
  check command check site
```


Testing Nagios

- Start Nagios now:
 - sudo /usr/local/etc/rc.d/nagios start
- Click on the Service Detail link in the left-hand menu
- Check that the routers, DNS and Web servers come up in the PENDING state
- Click on the service name and reschedule the next check, make sure they become OK after a few seconds

Installing Smokeping

- Install from ports to enable some extra probes:
 - sudo pkg_add -r rrdtool p5-CGI-Session p5-PathTools p5-Digest-HMAC p5-Digest-MD5 p5-Net p5-Pod-Parser p5-SNMP_Session fping echoping p5-Net-DNS
 - cd /usr/ports/net-mgmt/smokeping
 - sudo make config
 - Enable EchoPing and AnotherDNS probe options
 - sudo make deinstall clean install clean
- Edit /etc/rc.conf and add the following line:
 - smokeping_enable="YES"

Configuring Smokeping

- Edit /usr/local/etc/smokeping/config and change these settings:
 - sendmail = /usr/sbin/sendmail
 - step = **60**
 - unison_tolerance = 10
 - remove the "Slaves" section and "slaves =" lines
 - remove from "+ Test" to end of file

Configuring Apache for Smokeping

- Create /usr/local/etc/apache22/Includes/ smokeping.conf with these contents:
 - Alias /smokeping /usr/local/smokeping/htdocs
 Location /smokeping>
 DirectoryIndex smokeping.cgi
 AddHandler cgi-script .cgi
 </Location>
 Cirectory /usr/local/smokeping/htdocs>
 Allow from all

 </Directory>
- Tell Apache to reload its configuration:
 - /usr/local/etc/rc.d/apache22 reload

Monitoring Routers with Smokeping

- Edit /usr/local/etc/smokeping/config and append:
 - + kist probe = FPing host = 196.200.217.254
 - + serena
 probe = FPing
 host = 196.200.215.254
- Start Smokeping now:
 - sudo /usr/local/etc/rc.d/smokeping start

Monitoring DNS Servers

- In the *** Probes *** section, add:
 - + DNS binary = /usr/bin/dig lookup = www.yahoo.com
- In the *** Targets *** section, add:
 - + soekris
 probe = DNS
 host = 196.200.223.1
 - + upstream
 probe = DNS
 host = 196.200.223.2
- Restart Smokeping:
 - sudo /usr/local/etc/rc.d/smokeping reload

Monitoring Web Servers

- In the *** Probes *** section, add:
 - + EchoPingHttp binary = /usr/local/bin/echoping timeout = 30 pings = 5
- In the *** Targets *** section, add:
 - + google probe = EchoPingHttp host = www.google.com
 - + yahoo probe = EchoPingHttp host = www.yahoo.com
- Restart Smokeping again

Reading Smokeping Graphs (1)

Reading Smokeping Graphs (1)

- Overall latency a little high for first hop
- Rather high jitter
- No packet loss

Reading Smokeping Graphs (2)

Reading Smokeping Graphs (2)

- Significant drop in latency and packet loss for a short period
- Conclusion: link is heavily loaded most of the time

Diagnosing Busy Connections

- Heavily loaded link could be due to:
 - inbound traffic
 - downloads, bittorrent, attacks, incoming spam
 - outbound traffic
 - uploads, bittorrent, virus or worm-infected PCs, outgoing spam
 - both at the same time
- Total volume of traffic is not helpful
- Need to identify the source of the traffic
 - Identifying the destination may not help

Finding the Culprit

- Switch LEDs may help you track down busy ports
 - Do not discriminate between local and remote traffic
- Managed switches can have traffic on each port monitored remotely by SNMP
- Flows are the next level down
 - Cisco or Juniper router with NetFlow/sFlow
 - Unix router or bridge running pmacet or ntop
- Packets are the lowest level
 - Unix router or transparent bridge running Wireshark
 - Expensive hardware network analysers

Going with the Flow

- Flows are useful tools for traffic monitoring
 - Identify who is talking to who, and often the protocol or type of traffic
 - Much less verbose and easier to understand than packets
- A flow is (usually) a unique:
 - pair of IP addresses
 - pair of ports
 - protocol
- Flows are sampled (number of bytes reported) at fixed time intervals to add a sixth dimension
- Generated by Cisco/Juniper router, or pmacct

What do Flows look like?

ip_src	ip_dst	sport	dport	proto	pkts	bytes	inserted
41.190.128.29	196.200.216.44	143	63221	tcp	33	21776	25/05/10 13:32
196.200.216.94	213.254.211.14	50155	80	tcp	185	10160	25/05/10 13:32
213.254.211.14	196.200.216.94	80	50155	tcp	277	415500	25/05/10 13:32
213.199.149.57	196.200.216.156	80	50553	tcp	65	68255	25/05/10 13:33
196.200.216.100	213.254.211.8	58626	80	tcp	19	14192	25/05/10 13:32
196.200.216.133	69.64.75.206	49479	80	tcp	262	13374	25/05/10 13:32
69.64.75.206	196.200.216.133	80	49479	tcp	429	602968	25/05/10 13:32
209.85.229.155	196.200.216.133	80	49495	tcp	17	10428	25/05/10 13:32
209.85.229.155	196.200.216.133	80	49494	tcp	16	12119	25/05/10 13:32
69.64.72.239	196.200.216.133	80	49510	tcp	23	29652	25/05/10 13:32

What can we do with Flows?

Installing MySQL on FreeBSD

- Binary packages work fine:
 - sudo pkg_add -r mysql50-server
- Edit /etc/rc.conf and add the following line:
 - mysql_enable=YES
- Start the MySQL server now:
 - sudo /usr/local/etc/rc.d/mysql-server start

Installing pmacct on FreeBSD

- Install *pmacct* from ports to enable MySQL:
 - cd /usr/ports/net-mgmt/pmacct
 - sudo make config
 - Enable MySQL support
 - sudo make deinstall clean install
- There are no *rc* scripts for *pmacct* in the port, so create /*etc/rc.local* as follows:
 - #!/bin/sh
 - /usr/local/sbin/nfacctd -D -f \
 - /usr/local/etc/pmacct/nfacctd.conf

Creating the *pmacct* Database

- mysqladmin -u root create pmacct
- cat /usr/ports/net-mgmt/pmacct/work/pmacct-0.11.6/sql/pmacct-createdb_v6.mysql

```
CREATE TABLE `acct_v6` (
    `ip_src` char(15) NOT NULL,
    `ip_dst` char(15) NOT NULL,
    `src_port` int(2) unsigned NOT NULL,
    `dst_port` int(2) unsigned NOT NULL,
    `ip_proto` char(6) NOT NULL,
    `ip_proto` char(6) NOT NULL,
    `packets` int(10) unsigned NOT NULL,
    `bytes` bigint(20) unsigned NOT NULL,
    `flows` int(10) unsigned NOT NULL,
    `stamp_inserted` datetime NOT NULL,
    `stamp_updated` datetime default NULL,
    KEY `isdb`(`stamp_inserted`,`ip_src`,
    `ip_dst`,`src_port`,`dst_port`,`bytes`);
```

 mysql -u root pmacct < /usr/ports/net-mgmt/pmacct/work/pmacct-0.11.6/sql/ pmacct-create-db_v6.mysql

Grant Permissions on Database

- Create a password for the database
 - mysql -u root pmacct
 - mysql> GRANT ALL ON pmacct.* TO pmacct@localhost IDENTIFIED BY 'XXXXXXXX';

Query OK, 0 rows affected (0.00 sec)

mysql> GRANT ALL ON pmacct.* TO pmacct@127.0.0.1 IDENTIFIED BY 'XXXXXXXX';

Query OK, 0 rows affected (0.00 sec)

Setting up a Netflow Collector

• Create /usr/local/etc/pmacct/nfacctd.conf like this:

```
daemonize: false
debug: true
pidfile: /var/run/nfacctd.pid
logfile: /var/log/nfacctd.log
! syslog: daemon
nfacctd port: 4096
plugins: mysql
aggregate: src host, src port, dst host, dst port, proto
sql db: pmacct
sql table: acct v6
sql history: 1m
sql history roundoff: m
sql table version: 6
sql host: 127.0.0.1
sql user: pmacct
sql passwd: XXXXXXXX
sql refresh time: 60
sql dont try update: true
sql_optimize_clauses: true
! sql preprocess: minb = 1000
```


Enabling Netflow on Cisco

- You should enable Netflow on all active interfaces
- rtr-tedata> show interface summary

```
Interface IHQ IQD OHQ OQD RXBS RXPS TXBS TXPS TRTL

FastEthernet0/0 0 0 0 0 0 0 0 0 0

* FastEthernet0/1 1 0 0 0 1684000 369 1944000 315 0

* Serial0/0/0 0 0 0 0 957000 148 703000 165 0

* Serial0/0/1 0 0 0 0 1324000 182 1223000 201 0

* Serial0/2/0 0 0 0 469000 101 887000 140 0
```

rtr-tedata# conf t

```
rtr-tedata(config)# interface FastEthernet0/1
rtr-tedata(config-if)# ip route-cache flow
rtr-tedata(config-if)# exit
rtr-tedata(config)# interface Serial0/0/0
rtr-tedata(config-if)# ip route-cache flow
rtr-tedata(config-if)# exit
```

rtr-tedata# show ip flow top-talkers

```
SrcIf SrcIPaddress DstIf DstIPaddress Pr SrcP DstP Bytes
Se0/0/0 213.136.96.104 Fa0/1* 196.200.216.77 11 04AA 04A4 1539K
Se0/0/0 24.17.17.180 Fa0/1* 196.200.216.125 06 A6CE 1C2A 1522K
Se0/0/0 188.24.50.177 Fa0/1* 196.200.216.125 06 E87A 1C2A 1433K
Se0/2/0 207.148.178.122 Fa0/1* 196.200.216.125 06 BE90 1C2A 834K
Se0/0/1 195.226.227.100 Fa0/1* 196.200.216.125 06 EEA3 1C2A 647K
```


Exporting Netflow Data from Cisco

- If your collector's IP address is 1.2.3.4:
 - ssh cisco
 - enable
 - conf t
 - ip flow-cache timeout active 1
 - ip flow-cache timeout inactive 60
 - ip flow-export version 5
 - ip flow-export destination 1.2.3.4 4096
 - exit
 - write

Alternative: Monitoring Box

- Need a Unix box that can sniff the traffic:
 - Attached to a monitoring port of a managed switch
 - Attached to a dumb hub
 - Routing traffic between subnets
 - Bridging two LANs
- Options:
 - Use an existing Unix router or proxy
 - Create a new transparent bridge
 - Add a router outside of LAN (e.g. WAN side)
 - Reconfigure entire LAN

Transparent Bridging with FreeBSD

- Need a PC with at least two LAN interfaces
- Add the following lines to /etc/rc.conf:
 - cloned_interfaces="bridge0"
 - ifconfig_bridge0="addm em0 addm re0 up DHCP"
 - ifconfig_em0="up"
 - ifconfig_re0="up"
- Restart networking:
 - sudo /etc/rc.d/netif restart
- Insert bridge in front of client PC(s)
- Test that clients can still access the Internet!

Setting up the Flow Logger

cat /usr/local/etc/pmacct/pmacctd.conf

```
! daemonize: true
debug: true
pidfile: /var/run/pmacctd.pid
! syslog: daemon
plugins: mysql
aggregate: src host, src port, dst host, dst port, proto
interface: bridge0
sql db: pmacct
sql table: acct v6
sql history: 1m
sql history roundoff: m
sql table version: 6
sql_host: 127.0.0.1
sql user: pmacct
sql passwd: XXXXXXXXX
sql refresh time: 60
sql dont try update: true
sql_optimize_clauses: true
! sql preprocess: minb = 10000
```


Starting the Flow Logger

- sudo /usr/local/sbin/pmacctd -f /usr/local/etc/pmacct/ pmacctd.conf
- mysql pmacct -u root
- mysql> select ip_src, ip_dst, src_port, dst_port, bytes, stamp_inserted from acct_v6 limit 5;

```
| ip_dst
                         | src_port | dst_port | bytes | stamp_inserted
ip src
                                   60346 I
                                               22 | 37792 | 2009-05-09 17:22:00 |
| 196.200.223.2 | 196.200.208.4
| 196.200.223.2 | 196.200.208.4 |
                                   52755 |
                                               22 | 37872 | 2009-05-09 17:27:00 |
                                                22 | 12976 | 2009-05-09 17:48:00
196.200.216.38 | 196.200.208.20 |
                                    50689 I
196.200.216.51 | 196.200.208.20 |
                                                23 | 12108 | 2009-05-09 17:48:00 |
                                    52059 I
196.200.216.32 | 69.147.102.99 |
                                    64980 l
                                               80 | 10292 | 2009-05-09 17:50:00 |
5 rows in set (0.00 sec)
```

- Change pmacctd.conf to enable running as a daemon
- Add the command above to /etc/rc.local

Installing Tomcat

- Install from ports:
 - cd /usr/ports/www/tomcat6
 - sudo make install clean
- You may need to follow the instructions to download 180 MB of Java from Sun's website
- Edit /etc/rc.conf and add the following lines:
 - tomcat60_enable=YES
 - tomcat60_java_opts="-Djava.awt.headless=true"
- Start Tomcat now:
 - /usr/local/etc/rc.d/tomcat6 start

Installing pmGraph

- Download *pmgraph-1.3.war* from *http://pmgraph.sourceforge.net*
 - Should be a copy in /home/afnog on your machine
- cd /usr/local/apache-tomcat6.0/webapps
- sudo mkdir pmgraph
- cd pmgraph
- sudo jar xf /home/afnog/pmgraph-1.3.war

Configuring pmGraph

- cd /usr/local/apache-tomcat6.0/webapps/pmgraph/WEB-INF/classes
- sudo vi database.properties
 - DatabaseURL = jdbc:mysql://localhost/pmacct
 - DatabasePass = XXXXXXXXX
 - LocalSubnet = 196.200.219.
- Restart Tomcat:
 - sudo killall java
 - sudo /usr/local/etc/rc.d/tomcat6 start
- Should work but doesn't:
 - sudo /usr/local/etc/rc.d/tomcat6 restart

Testing pmGraph

- fetch ftp://noc.ws.afnog.org/pub/g4l-v0.33.iso
- Browse to http://localhost:8180/pmgraph:

Next

- What is bandwidth management
- When to manage bandwidth
- Troubleshooting an Internet connection
- Monitoring an Internet connection
- > Setting policy
- Enforcing Policy
 - Social measures
 - Technical measures
- Summary and resources

What Next?

- Internet connection is sometimes full
- What can be done about it?
 - Block traffic that nobody wants (viruses, spam)
 - Efficiency savings (perhaps 10-50%)
 - Changing user behaviour
- Changing behaviour requires education and policy

Blocking Unwanted Traffic

- Outbound worm traffic is the most likely candidate
 - Identify infected machines (using monitoring tools)
 - Clean them and install antivirus software
 - Keep antivirus up to date
 - Block ports used by worms
 - Set alarms to detect infected machines in future
- Incoming spam may waste some capacity
 - Monitoring will tell you how much traffic is email
 - Good local spam filtering can help, but is difficult!
 - Remote email filtering services can help (e.g. Barracuda, LBSD)

Efficiency Savings

- Run a local DNS cache
- Run a local web cache
- Identify commonly downloaded files as candidates for local mirroring
- Check for inter-site traffic due to Active Directory and VPNs
- Don't expect too much improvement here

What is a Policy

- Rules on what a network (or Internet connection) can or can't be used for
 - also known as an Acceptable Use Policy
- Every good network has some kind of Acceptable Use Policy
- Users of a shared connection are entitled to agree on rules for sharing it
 - Rules imposed from above are usually unpopular
- How can we set policy fairly?

Why Set a Policy

- Network abuse is a social problem
- Social problems require social solutions
 - Changing network traffic means changing user behaviour
 - Technical solutions doesn't change attitudes
 - Rules, conventions, debate, consultation and consensus can be more effective
 - Requires buy-in from the top levels of organisations
- Policy guides implementation
 - Easier to decide what to block or restrict
 - Implementation without policy can be accused of being unaccountable, unfair, arbitrary or just wrong

What's in a Policy

- The best Acceptable Use Policies would be:
 - Based on evidence
 - Set by consensus
 - Known by all
 - Monitored
 - Enforced
 - Reviewed regularly

Collecting Evidence

- Show effects of high network traffic on essential applications (e.g. by correlation or measurement)
- Show how much network traffic is used for different purposes (without prejudging)
- Show how much network traffic is used by the top users and departments (without naming them)
- Show the causes of high network traffic (applications, working practices, visibility)
- Show how much could be saved by efficiency measures (e.g. caches)

Proposing a Policy

- Consider whether certain applications have a good case for work use
 - Who says P2P, banner adverts or Skype are not business functions?
- Consider charging for usage (by volume or rate)
- Consider quotas on bandwidth use
- Consider throttling user traffic based on usage
- Consider applying the same rules as for phone calls, printing, photocopying

Reaching Consensus

- Involve all stakeholders (worth the effort)
- Present the evidence, and create space for discussion
- Explore all possible social and technical solutions
- Ensure that all views are taken into account
 - Try to accommodate dissent, e.g. allow personal use out of hours or within defined limits
- Try to avoid "design by committee" bloat
 - Make a case for simplicity
 - Don't be afraid to leave open to interpretation, e.g. "academic use" or "business use"

Consensus Failure

- If consensus cannot be reached:
 - Find out why it's being blocked
 - Check that all views were taken into account
 - Make another proposal
 - Consider delaying implementation
 - Try a different decision mechanism
 - Consider imposing a temporary policy (with a time limit)

Publishing Policy

- Important that all users knows the policy
 - Users won't follow unwritten rules
- Post in the usual places (computer rooms, letters to new members and users)
- If possible, collect signatures before allowing access (issuing user identifiers)
- Publish the complete policy
 - even if some of it only applies to some users
 - more reason to keep it short and simple!

Reviewing Policy

- Decide and publish the review date in the policy
- Users are more likely to accept a temporary restriction than a permanent one
- Users are more likely to agree if they feel that:
 - They are being listened to
 - Their views have an influence on the policy
- Solicit comments in the policy document itself
- Log comments for review time
- Help people to comment anonymously

Next

- What is bandwidth management
- When to manage bandwidth
- Troubleshooting an Internet connection
- Monitoring an Internet connection
- Setting policy
- > Enforcing Policy
 - Social measures
 - Technical measures
- Summary and resources

Monitoring Compliance

- Easy to set policy and never monitor compliance
- Sometimes only checked when a breach is suspected
- Data may no longer be available
- Users will lose respect for policy over time
- Better to at least collect compliance data continuously
- Good idea to delete data after some time
- Good idea to inform users (privacy policy)

Accountability

- Monitoring often gives a list of IP addresses
- How to connect them to users?
 - NAT problem
 - IP address spoofing
 - MAC address spoofing
 - Switch port security
 - Shared computers (e.g. labs)
 - Wireless clients
- 802.1x authentication solves many problems
- Proxy authentication can be a partial solution

Next

- What is bandwidth management
- When to manage bandwidth
- Troubleshooting an Internet connection
- Monitoring an Internet connection
- Setting policy
- > Enforcing Policy
 - Social measures
 - Technical measures
- Summary and resources

Social Measures

- Network abuse is a social problem, not technical
- In most cases, social solutions work better:
 - Users may not be aware of their bandwidth use
 - Consider educating users on bandwidth use and tools
 - Likely to be few network abusers (about 5%)
 - Likely to be the most technically skilled
 - Discuss the problem with them first, in private
 - Consider publishing a list of the heaviest users
 - Consider disciplinary action, revoking privileges
- If necessary, technical options are available

Next

- What is bandwidth management
- When to manage bandwidth
- Troubleshooting an Internet connection
- Monitoring an Internet connection
- Setting policy
- > Enforcing Policy
 - Social measures
 - Technical measures
- Summary and resources

Technical Measures

- Traffic prioritisation (tc, dummynet, altq)
- Limiting bandwidth used by some kinds of traffic
- Interactive fair sharing between IPs (SFQ, WFQ)
- Hard bandwidth quotas (cut off users over limit)
- Soft bandwidth quotas (throttle users over limit)
- Flexible throttling (progressively reduce bandwidth)

Traffic Prioritisation (1)

- client: ping 4.2.2.2
- sudo kldload ipfw dummynet
- sudo ipfw add pipe 1 ip from any to 196.200.218.0/24
- sudo ipfw add pipe 2 ip from 196.200.218.0/24 to any
- sudo vi /etc/sysctl.conf
 - net.link.bridge.ipfw=1
- sudo /etc/rc.d/sysctl restart
- client: fetch http://196.200.218.200/bigfile

Traffic Prioritisation (2)

- sudo ipfw queue 1 config pipe 1 weight 100
- sudo ipfw queue 2 config pipe 1 weight 50
- sudo ipfw queue 3 config pipe 2 weight 100
- sudo ipfw queue 4 config pipe 2 weight 50
- sudo ipfw flush
- sudo ipfw add queue 1 icmp from any to 196.200.218.0/24
- sudo ipfw add queue 2 ip from any to 196.200.218.0/24
- sudo ipfw add queue 3 icmp from 196.200.218.0/24 to any
- sudo ipfw add queue 4 ip from 196.200.218.0/24 to any

Hard quotas

- pmacct database comes in very useful!
- echo 'SELECT ip_dst, sum(bytes) AS bytes
 FROM acct_v6
 WHERE ip_dst LIKE "196.200.218.%"
 AND ip_src NOT LIKE "196.200.218.%"
 GROUP BY ip_dst
 HAVING bytes > 1000000' |
 mysql pmacct -u root |
 while read ip bytes; do
 ipfw add deny ip from \$ip to any
 ipfw add deny ip from any to \$ip
 done

